【題目】中國(guó)有個(gè)名句“運(yùn)籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進(jìn)行計(jì)算,算籌是將幾寸長(zhǎng)的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,如圖,當(dāng)表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬(wàn)位數(shù)用縱式表示,十位,千位,十萬(wàn)位用橫式表示,以此類推.例如 6613 用算籌表示就是 ,則 8335 用算籌可表示為(
A.
B.
C.
D.

【答案】B
【解析】解:由題意各位數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬(wàn)位數(shù)用縱式表示,十位,千位,十萬(wàn)位用橫式表示,則8335 用算籌可表示為 , 故選:B
根據(jù)新定義直接判斷即可

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,則輸出的n值為( ) 參考數(shù)據(jù): ,sin15°≈0.2588,sin7.5°≈0.1305.

A.12
B.24
C.48
D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinωx cosωx﹣sin2ωx+1(ω>0)相鄰兩條對(duì)稱軸之間的距離為
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)已知a,b,c分別為△ABC中角A,B,C的對(duì)邊,且滿足a= ,f(A)=1,求△ABC 面積 S 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)經(jīng)過點(diǎn)( ,1),過點(diǎn)A(0,1)的動(dòng)直線l與橢圓C交于M、N兩點(diǎn),當(dāng)直線l過橢圓C的左焦點(diǎn)時(shí),直線l的斜率為
(1)求橢圓C的方程;
(2)是否存在與點(diǎn)A不同的定點(diǎn)B,使得∠ABM=∠ABN恒成立?若存在,求出點(diǎn)B的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一袋中有7個(gè)大小相同的小球,其中有2個(gè)紅球,3個(gè)黃球,2個(gè)藍(lán)球,從中任取3個(gè)小球.
(I)求紅、黃、藍(lán)三種顏色的小球各取1個(gè)的概率;
(II)設(shè)X表示取到的藍(lán)色小球的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前 n 項(xiàng)和為 Sn , a1=1,且 an+1=2Sn+1,n∈N
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令 c=log3a2n , bn= ,記數(shù)列{bn}的前 n 項(xiàng)和為Tn , 若對(duì)任意 n∈N , λ<Tn 恒成立,求實(shí)數(shù) λ 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C: =1(a>0,b>0)的左、右焦點(diǎn)分別為F1 , F2 , O為坐標(biāo)原點(diǎn),P是雙曲線在第一象限上的點(diǎn)且滿足|PF1|=2|PF2|,直線PF2交雙曲線C于另一點(diǎn)N,又點(diǎn)M滿足 = 且∠MF2N=120°,則雙曲線C的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC= AD=1,CD=
(1)求證:平面MQB⊥平面PAD;
(2)若二面角M﹣BQ﹣C大小的為60°,求QM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)y=f(x)的圖象(
A.關(guān)于點(diǎn)( ,0)對(duì)稱?
B.關(guān)于直線x= 對(duì)稱
C.關(guān)于點(diǎn)( ,0)對(duì)稱?
D.關(guān)于直線x= 對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案