已知O為△ABC的外心,若數(shù)學(xué)公式,則∠C等于________.


分析:設(shè)出外接圓的半徑,由,移項得,再平方得到,從而∠AOB,最后根據(jù)圓心角等于同弧所對的圓周的兩倍得△ABC中的內(nèi)角C值.
解答:解:設(shè)外接圓的半徑為R,

所以,
∴(5+122=(132,
∴169R2+120=169R2,
=0,
∴∠AOB=,
根據(jù)圓心角等于同弧所對的圓周的關(guān)系如圖:
所以△ABC中的內(nèi)角C值為
故答案為:
點評:本小題主要考查三角形外心的應(yīng)用、向量在幾何中的應(yīng)用等基礎(chǔ)知識,考查運算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O為△ABC所在平面外一點,且
OA
=
a
,
OB
=
b
,
OC
=
c
,OA,OB,OC兩兩互相垂直,H為△ABC的垂心,試用
a
,
b
,
c
表示
OH

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)已知四面體P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=
3
AB
,若四面體P-ABC的體積為
3
2
,則該球的體積為
4
3
π
4
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體P-ABC的外接球的球心O在AB上,且PO⊥面ABC,2AC=
3
AB
,若四面體P-ABC的體積為
3
2
,則P、C兩點間的球面距離為
3
2
п
3
2
п

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)已知四面體P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=
3
AB,若四面體P-ABC的體積為
3
2
,則該球的體積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是△ABC的外心,P是平面ABC外的一點,且PA=PB=PC,α是經(jīng)過PO的任意一個平面,則α與平面ABC所成的角為_______________.

查看答案和解析>>

同步練習(xí)冊答案