(本小題滿分14分)
設(shè)函數(shù),
(1)求證:不論為何實(shí)數(shù)在定義域上總為增函數(shù);
(2)確定的值,使為奇函數(shù);
(3)當(dāng)為奇函數(shù)時(shí),求的值域.

(1) 見(jiàn)解析; (2)  
(3)為奇函數(shù)時(shí),其值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f7/b/r24sc2.png" style="vertical-align:middle;" /> 

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若函數(shù)f(x)的圖象在處的切線斜率為3,求實(shí)數(shù)m的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)在[1,2]上是減函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知y=是二次函數(shù),且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞減區(qū)間及值域..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/04/d/1rtug2.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(Ⅰ)求的值;  (Ⅱ)判斷函數(shù)的單調(diào)性;
(Ⅲ)若對(duì)任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義域?yàn)镽,滿足:①;
②對(duì)任意實(shí)數(shù),有.
(Ⅰ)求,的值;
(Ⅱ)判斷函數(shù)的奇偶性與周期性,并求的值;
(Ⅲ)是否存在常數(shù),使得不等式對(duì)一切實(shí)數(shù)成立.如果存在,求出常數(shù)的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)設(shè)為實(shí)常數(shù)).
(1)當(dāng)時(shí),證明:不是奇函數(shù);
(2)設(shè)是奇函數(shù),求的值;
(3)當(dāng)是奇函數(shù)時(shí),證明對(duì)任何實(shí)數(shù)、c都有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知
⑴求的值;      ⑵判斷的奇偶性。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)已知函數(shù)是奇函數(shù),且.
(1) 求的表達(dá)式;(2) 設(shè); zxxk
,求S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù)y=f(x)= (a,b,c∈R,a>0,b>0)是奇函數(shù),當(dāng)x>0時(shí),f(x)有最小值2,其中b∈N且f(1)<.試求函數(shù)f(x)的解析式

查看答案和解析>>

同步練習(xí)冊(cè)答案