已知,其中是常數(shù).
(1))當(dāng)時, 是奇函數(shù);
(2)當(dāng)時,的圖像上不存在兩點(diǎn)、,使得直線平行于軸.
證明見解析.
解析試題分析:(1)奇函數(shù)的問題,可以根據(jù)奇函數(shù)的定義,利用來解決,當(dāng)然如果你代數(shù)式變形的能力較強(qiáng),可以直接求然后化簡變形為,從而獲得證明;(2)要證明函數(shù)的圖像上不存在兩點(diǎn)A、B,使得直線AB平行于軸,即方程不可能有兩個或以上的解,最多只有一個解,,,因此原方程最多只有一解,或者用反證法證明,設(shè)存在,即有兩個,且,使,然后推理得到矛盾的結(jié)論,從而完成證明.
試題解析:(1)由題意,函數(shù)定義域, 1分
對定義域任意,有:
4分
所以,即是奇函數(shù). 6分
(2)假設(shè)存在不同的兩點(diǎn),使得平行軸,則
9分
化簡得:,即,與不同矛盾。 13分
的圖像上不存在兩點(diǎn),使得所連的直線與軸平行 14分
考點(diǎn):(1)函數(shù)的奇偶性;(2)函數(shù)的單調(diào)性與方程的解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知α、β是方程x2+(2m-1)x+4-2m=0的兩個實(shí)根,且α<2<β,求m的取值范圍;(2)若方程x2+ax+2=0的兩根都小于-1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,.
(1)若,試判斷并證明函數(shù)的單調(diào)性;
(2)當(dāng)時,求函數(shù)的最大值的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)為正實(shí)數(shù),函數(shù).
(1)若,求的取值范圍;(2)求的最小值;
(3)若,求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知冪函數(shù)的圖象經(jīng)過點(diǎn).
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)判斷函數(shù)在區(qū)間上的單調(diào)性,并用單調(diào)性的定義證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知奇函數(shù)f(x)在定義域[-2,2]上單調(diào)遞減,求滿足f(1-m)+f(1-m2)<0的實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com