11.已知復(fù)數(shù)z滿足z(1-i)2=1+i (i為虛數(shù)單位),則|z|為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.1

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡求得z,代入復(fù)數(shù)模的計(jì)算公式求解.

解答 解:由z(1-i)2=1+i,得$z=\frac{1+i}{(1-i)^{2}}=\frac{1+i}{-2i}=\frac{(1+i)•i}{-2{i}^{2}}=-\frac{1}{2}+\frac{1}{2}i$,
∴|z|=$\sqrt{(-\frac{1}{2})^{2}+(\frac{1}{2})^{2}}=\frac{\sqrt{2}}{2}$.
故選:B.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等差數(shù)列{an},Sn是{an}的前n項(xiàng)和,則對于任意的n∈N*,“an>0”是“Sn>0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.當(dāng)x≠1且x≠0時(shí),數(shù)列{nxn-1}的前n項(xiàng)和Sn=1+2x+3x2+…nxn-1(n∈N*)可以用數(shù)列求和的“錯(cuò)位相減法”求得,也可以由x+x2+x3+…+xn(n∈N*)按等比數(shù)列的求和公式,先求得x+x2+x3+…+xn=$\frac{x-{x}^{n+1}}{1-x}$,兩邊都是關(guān)于x的函數(shù),兩邊同時(shí)求導(dǎo),(x+x2+x3+…+xn)′=($\frac{x-{x}^{n+1}}{1-x}$)′,從而得到:Sn=1+2x+3x2+…+nxn-1=$\frac{1-(n+1){x}^{n}+n{x}^{n+1}}{(1-x)^{2}}$,按照同樣的方法,請從二項(xiàng)展開式(1+x)n=1+${C}_{n}^{1}$x+C${\;}_{n}^{2}$x2+…+C${\;}_{n}^{n}$xn出發(fā),可以求得,Sn=1×2×C${\;}_{n}^{1}$+2×3×C${\;}_{n}^{2}$+3×4×C${\;}_{n}^{3}$+…+n×(n+1)×C${\;}_{n}^{n}$(n≥4)的和為n(n+3)2n-2(請?zhí)顚懽詈喗Y(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.霧霾天氣對城市環(huán)境造成很大影響,按照國家環(huán)保部發(fā)布的標(biāo)準(zhǔn):居民區(qū)的PM2.5(大氣中直徑小于或等于2.5微米的顆粒物)年平均濃度不得超過35微克/立方米.某市環(huán)保部門加強(qiáng)了對空氣質(zhì)量的監(jiān)測,抽取某居民區(qū)監(jiān)測點(diǎn)的20天PM2.5的24小時(shí)平均濃度的監(jiān)測數(shù)據(jù),制成莖葉圖如圖1:

(Ⅰ)完成如下頻率分布表,并在所給的坐標(biāo)系中畫出(0,100)的頻率分布直方圖如圖2;
組別PM2.5濃度(微粒、立方米)頻數(shù)(天)頻率
第一組(0,25]50.25
第二組(25,50]100.5
第三組(50,75]30.15
第四組(75,100]20.1
(Ⅱ)從樣本中PM2.5的24小時(shí)平均濃度超過50微克/立方米的天數(shù)中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過75微克/立方米的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線x+y+$\sqrt{2}$=0相切.A,B是橢圓C的右頂點(diǎn)與上頂點(diǎn),直線y=kx(k>0)與橢圓相交于E,F(xiàn)兩點(diǎn).
(1)求橢圓C的方程;
(2)當(dāng)四邊形AEBF面積取最大值時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)m∈R,向量$\overrightarrow{a}$=(m+2,1),$\overrightarrow$=(1,-2m),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{34}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)復(fù)數(shù)z滿足(1-i)z=|1+$\sqrt{3}i}$|(i為虛數(shù)單位),則$\overline z$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別為a,b,c,且b=c,2sinB=$\sqrt{3}$sinA.
(Ⅰ)求cosB的值;
(Ⅱ)若a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的離心率為$\sqrt{2}$,則雙曲線的漸近線的夾角為( 。
A.60°B.45°C.75°D.90°

查看答案和解析>>

同步練習(xí)冊答案