如圖,四棱柱中,平面.
(Ⅰ)從下列①②③三個條件中選擇一個做為的充分條件,并給予證明;
①,②;③是平行四邊形.
(Ⅱ)設(shè)四棱柱的所有棱長都為1,且為銳角,求平面與平面所成銳二面角的取值范圍.
(Ⅰ)詳見解析;(Ⅱ).
解析試題分析:(Ⅰ)由平面和可以得到平面,從而可以得到,結(jié)合作已知條件,可以證明平面,進而可以得到;
(Ⅱ)建立空間直角坐標系,將題中涉及的關(guān)鍵點用參數(shù)表示出來,并將問題中涉及的二面角的余弦值利用參數(shù)表示出來,結(jié)合函數(shù)的方法確定二面角的余弦值的取值范圍,進而確定二面角的取值范圍.
試題解析:(Ⅰ)條件②,可做為的充分條件. 1分
證明如下:
平面,,平面, 2分
∵平面,.
若條件②成立,即,∵,平面, 3分
又平面,. ..4分
(Ⅱ)由已知,得是菱形,.
設(shè),為的中點,則平面,
∴、、交于同一點且兩兩垂直. 5分
以分別為軸建立空間直角坐標系,如圖所示.6分
設(shè),,其中,
則,,,,,
,, 7分
設(shè)是平面的一個法向量,
由得令,則,,
, 9分
又是平面的一個法向量, 10分
, 11分
令,則,為銳角,
,則,,
因為函數(shù)在上單調(diào)遞減,,
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,點M是A1B的中點,點N是B1C的中點,連接MN
(Ⅰ)證明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,連結(jié)A1B與∠A1BC=60°.
(Ⅰ)求證:AC⊥A1B;
(Ⅱ)設(shè)D是BB1的中點,求三棱錐D-A1BC1的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知多面體的底面是邊長為的正方形,底面,,且.
(Ⅰ)求多面體的體積;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)記線段BC的中點為K,在平面ABCD內(nèi)過點K作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
四棱錐P-ABCD中,PA⊥平面ABCD,E為AD的中點,ABCE為菱形,∠BAD=120°,PA=AB,G、F分別是線段CE、PB的中點.
(Ⅰ) 求證:FG∥平面PDC;
(Ⅱ) 求二面角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com