【題目】(1)利用“五點法”畫出函數(shù)在長度為一個周期的閉區(qū)間的簡圖.
列表:
x | |||||
y |
作圖:
(2)并說明該函數(shù)圖象可由的圖象經(jīng)過怎么變換得到的.
(3)求函數(shù)圖象的對稱軸方程.
【答案】(1)見解析(2) 見解析(3) .
【解析】
(1)先列表如圖確定五點的坐標(biāo),后描點并畫圖,利用“五點法”畫出函數(shù)在長度為一個周期的閉區(qū)間的簡圖;
(2)依據(jù)的圖象上所有的點向左平移個單位長度,的圖象,再把所得圖象的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到的圖象,再把所得圖象的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變),得到的圖象;
(3)令,求出即可.
解:(1)先列表,后描點并畫圖
0 | |||||
x | |||||
y | 0 | 1 | 0 | -1 | 0 |
;
(2)把的圖象上所有的點向左平移個單位, 再把所得圖象的點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到的圖象,即的圖象;
(3)由,
所以函數(shù)的對稱軸方程是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,記函數(shù)在上的最大值為,最小值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時,求不等式在上的解;
(2)設(shè),關(guān)于直線對稱的函數(shù)為,求證:當(dāng)時,;
(3)若函數(shù)恰好在和兩處取得極值,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)由0,1,2,…,9這十個數(shù)字組成的無重復(fù)數(shù)字的四位數(shù)中,十位數(shù)字與千位數(shù)字之差的絕對值等于7的四位數(shù)的個數(shù)共有幾種?
(2)我校高三學(xué)習(xí)雷鋒志愿小組共有16人,其中一班、二班、三班、四班各4人,現(xiàn)在從中任選3人,要求這三人不能是同一個班級的學(xué)生,且在三班至多選1人,求不同的選取法的種數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若,求函數(shù)在區(qū)間上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,函數(shù)在區(qū)間上恰有兩個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有如下命題:①函數(shù)與的圖象恰有三個交點;②函數(shù)與的圖象恰有一個交點;③函數(shù)與的圖象恰有兩個交點;④函數(shù)與的圖象恰有三個交點,其中真命題為_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】酒駕是嚴(yán)重危害交通安全的違法行為.為了保障交通安全,根據(jù)國家有關(guān)規(guī)定:100mL血液中酒精含量低于20mg的駕駛員可以駕駛汽車,酒精含量達到20~79mg的駕駛員即為酒后駕車,80mg及以上認(rèn)定為醉酒駕車.假設(shè)某駕駛員喝了一定量的酒后,其血液中的酒精含量上升到了1mg/mL.如果在停止喝酒以后,他血液中酒精含量會以每小時30%的速度減少,那么他至少經(jīng)過幾個小時才能駕駛汽車?( )(參考數(shù)據(jù):lg0.2≈﹣0.7,1g0.3≈﹣0.5,1g0.7≈﹣0.15,1g0.8≈﹣0.1)
A.1B.3C.5D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求該函數(shù)的最大值;
(2)是否存在實數(shù),使得該函數(shù)在閉區(qū)間上的最大值為?若存在,求出對應(yīng)的值;若不存在,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com