分析 求出函數(shù)的定義域,利用換元法結(jié)合復(fù)合函數(shù)單調(diào)性之間的關(guān)系進(jìn)行求解即可.
解答 解:∵f(x)=logax在定義域內(nèi)單調(diào)遞增,
∴a>1,
由3-2x-x2>0得x2+2x-3<0,得-3<x<1,
即函數(shù)g(x)的定義域為(-3,1),
設(shè)t=3-2x-x2,則拋物線開口向下,對稱軸為x=-1,
∵f(x)=logax在定義域內(nèi)單調(diào)遞增,
∴要求函數(shù)g(x)=loga(3-2x-x2)的單調(diào)遞增區(qū)間,等價求t=3-2x-x2,的遞增區(qū)間,
∵t=3-2x-x2的遞增區(qū)間是(-3,-1),
∴函數(shù)g(x)的單調(diào)遞增區(qū)間為(-3,-1),
故答案為:(-3,-1)
點評 本題主要考查函數(shù)單調(diào)區(qū)間的求解,利用換元法結(jié)合復(fù)合函數(shù)同增異減的單調(diào)性的關(guān)系是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{π+3\sqrt{3}}}{12}$ | B. | $\frac{{2π+3\sqrt{3}}}{6}$ | C. | $\frac{{2π+\sqrt{3}}}{12}$ | D. | $\frac{{2π+3\sqrt{3}}}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,-4) | B. | (3,4) | C. | (-3,-4) | D. | (-3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com