7.若點(diǎn)(a,16)在函數(shù)y=2x的圖象上,則tan$\frac{aπ}{6}$的值為( 。
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{3}$

分析 由條件求得a的值,再利用誘導(dǎo)公式化簡(jiǎn)所給式子的值,可得結(jié)果.

解答 解:∵點(diǎn)(a,16)在函數(shù)y=2x的圖象上,
∴16=2a,
∴a=4,
則tan$\frac{aπ}{6}$=tan$\frac{2π}{3}$=-tan$\frac{π}{3}$=-$\sqrt{3}$,
故選:C.

點(diǎn)評(píng) 本題主要考查應(yīng)用誘導(dǎo)公式化簡(jiǎn)三角函數(shù)式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若P為滿(mǎn)足不等式組$\left\{\begin{array}{l}{x+y≤1}\\{2x-y+1≥0}\\{x-y≤1}\end{array}\right.$的平面區(qū)域Ω內(nèi)任意一點(diǎn),Q為圓M:(x-3)2+y2=1內(nèi)(含邊界)任意一點(diǎn),則|PQ|的最大值是$\sqrt{34}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知an=logn+1(n+2)(n∈N*),觀察下列算式:a1•a2=log23•log34=$\frac{lg3}{lg2}$$•\frac{lg4}{lg3}$=2;a1•a2•a3•a4•a5•a6=log23•log34•…•log78=$\frac{lg3}{lg2}$$•\frac{lg4}{lg3}$•…•$\frac{lg8}{lg7}$=3,…;若a1•a2•a3•…•am=2016(m∈N*),則m的值為(  )
A.22016+2B.22016C.22016-2D.22016-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=x3+ax2+bx+1,函數(shù)y=f(x+1)-1為奇函數(shù),則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)x3+ax+b=0,其中a,b均為實(shí)數(shù).下列條件中,使得該三次方程僅有一個(gè)實(shí)根的是①③④.(寫(xiě)出所有正確條件的編號(hào))
①a=b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a${\;}_{3}^{2}$=9a2a6,設(shè)bn=log3a1+log3a2+…+log3an,則數(shù)列{$\frac{1}{_{n}}$}的前n項(xiàng)和為-$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且2an+Sn=An2+Bn+C.
(1)當(dāng)A=B=0,C=1時(shí),求an;
(2)若數(shù)列{an}為等差數(shù)列,且A=1,C=-2.
①設(shè)bn=2n•an,求數(shù)列{bn}的前n項(xiàng)和;
②設(shè)cn=$\frac{{{T_n}-6}}{4^n}$,若不等式cn≥$\frac{m}{8}$對(duì)任意n∈N*恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,cosA=$\frac{3}{5}$,cosB=$\frac{4}{5}$,則sin(A-B)=( 。
A.-$\frac{7}{25}$B.$\frac{7}{25}$C.-$\frac{9}{25}$D.$\frac{9}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若x,y滿(mǎn)足$\left\{\begin{array}{l}{x≤2}\\{x-y+1≥0}\\{x+y-2≥0}\end{array}\right.$,則z=2x+y的最大值為7.

查看答案和解析>>

同步練習(xí)冊(cè)答案