求二次函數(shù)f(x)=x2-4x-1在區(qū)間[t,t+2]上的最小值g(t),其中t∈R.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用二次函數(shù)的對稱軸以及開口方向,通過對稱軸是否的區(qū)間內(nèi),討論求函數(shù)的最小值.
解答: 解:函數(shù)f(x)=(x-2)2-5的圖象的對稱軸方程為x=2,開口向上.
當(dāng)2∈[t,t+2],即t≤2≤t+2,也就是0≤t≤2時(shí),g(t)=f(2)=-5;
當(dāng)2∉[t,t+2]時(shí),
①當(dāng)t>2時(shí),f(x)在[t,t+2]上為增函數(shù),故g(t)=f(t)=t2-4t-1.
②當(dāng)t+2<2,即t<0時(shí),f(x)在[t,t+2]上為減函數(shù),故g(t)=f(t+2)=(t+2)2-4(t+2)-1=t2-5.
故g(t)的解析式為g(t)=
t2-4t-1,t>2
-5,0≤t≤2
t2-5,t<0.
點(diǎn)評:本題考查二次函數(shù)的最值的應(yīng)用,考查分析問題解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若二次不等式 ax2+bx+6<0 的解集是{x|x<-2或x>3},則a=( 。
A、2B、-2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x與y之間的回歸直線方程為y=-3+2x,若
10
i=1
xi=17,則
10
i=1
yi的值等于( 。
A、3B、4C、0.4D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sinωxcos(ωx+φ),(ω>0,-π<φ<π)的單増區(qū)間為[kπ-
π
12
,kπ+
12
],(k∈Z).
(1)求ω,φ的值;
(2)在△ABC中,若f(A)<
3
,求角A的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+1(a∈R).
(1)若函數(shù)y=f(x)在區(qū)間(0,
2
3
)上遞增,在區(qū)間[
2
3
,+∞)遞減,求a的值;
(2)當(dāng)x∈[0,1]時(shí),設(shè)函數(shù)y=f(x)圖象上任意一點(diǎn)處的切線的傾斜角為θ,若給定常數(shù)a∈(
3
2
,+∞),求tanθ的取值范圍;
(3)在(1)的條件下,是否存在實(shí)數(shù)m,使得函數(shù)g(x)=x4-5x3+(2-m)x2+1(m∈R)的圖象與函數(shù)y=f(x)的圖象恰有三個(gè)交點(diǎn).若存在,求實(shí)數(shù)m的取值范圍;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點(diǎn).
(1)求證:PA∥平面BDE;
(2)求證:平面PAC⊥平面BDE;
(3)若OP=10,AB=4,求BE與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),周期為3,且x∈[0,1]時(shí),f(x)=x2-x+2,求f(-2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1到9的九個(gè)數(shù)字中任取7個(gè)數(shù)組成沒有重復(fù)數(shù)字的七位數(shù).
(1)若要求偶數(shù)和奇數(shù)各至少有一個(gè),能組成多少個(gè)七位數(shù)?
(2)若取三個(gè)偶數(shù)和四個(gè)奇數(shù),且任意兩偶數(shù)都不相鄰的七位數(shù)有幾個(gè)?
(3)偶數(shù)必須要在偶數(shù)位上的七位數(shù)有幾個(gè)?(結(jié)果用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
ax2-3x.
(1)若f(x)在x=3處有極值,求a的值;
(2)在(1)的條件下,求f(x)在區(qū)間[0,4]上的最大值.

查看答案和解析>>

同步練習(xí)冊答案