【題目】小明家訂了一份報(bào)紙,送報(bào)人可能在早上6 : 30至7 : 30之間把報(bào)紙送到小明家,小明離開家去上學(xué)的時(shí)間在早上7 : 00至8 : 30之間,問小明在離開家前能得到報(bào)紙(稱為事件)的概率是多少( )
A. B. C. D.
【答案】A
【解析】分析:設(shè)送報(bào)人到達(dá)時(shí)間為,小明離開家的時(shí)間為,可以看成是平面中的點(diǎn),列出關(guān)于的不等式組,利用線性規(guī)劃求出構(gòu)成的面積,以及明在離開家前能得到報(bào)紙的構(gòu)成的面積,利用幾何概型概率公式求解即可.
詳解:
設(shè)送報(bào)人到達(dá)時(shí)間為,小明離開家的時(shí)間為,
可以看成是平面中的點(diǎn),
試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?/span>
,
這是一個(gè)矩形區(qū)域,面積
事件所構(gòu)成的區(qū)域?yàn)?/span>
,
,
由幾何概型概率公式可得,,
小明在離開家前能得到報(bào)紙(稱為事件)的概率是,故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面程序框圖中,若輸入互不相等的三個(gè)正實(shí)數(shù)a,b,c(abc≠0),要求判斷△ABC的形狀,則空白的判斷框應(yīng)填入( )
A.a2+b2>c2?
B.a2+c2>b2?
C.b2+c2>a2?
D.b2+a2=c2?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由經(jīng)驗(yàn)得知,在某商場付款處排隊(duì)等候付款的人數(shù)及概率如表:
排隊(duì)人數(shù) | 人以上 | |||||
概率 |
(1)至多有人排隊(duì)的概率是多少?
(2)至少有人排隊(duì)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和,,,(且), , .
(I)求;
(Ⅱ)猜想數(shù)列的通項(xiàng)公式,并證明;
(Ⅲ)設(shè)函數(shù),若對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,微信越來越受歡迎,許多人通過微信表達(dá)自己、交流思想和傳遞信息,微信是現(xiàn)代生活中進(jìn)行信息交流的重要工具.而微信支付為用戶帶來了全新的支付體驗(yàn),支付環(huán)節(jié)由此變得簡便而快捷.某商場隨機(jī)對商場購物的100名顧客進(jìn)行統(tǒng)計(jì),其中40歲以下占 ,采用微信支付的占 ,40歲以上采用微信支付的占 .
(Ⅰ)請完成下面2×2列聯(lián)表:
40歲以下 | 40歲以上 | 合計(jì) | |
使用微信支付 | |||
未使用微信支付 | |||
合計(jì) |
并由列聯(lián)表中所得數(shù)據(jù)判斷有多大的把握認(rèn)為“使用微信支付與年齡有關(guān)”?
(Ⅱ)若以頻率代替概率,采用隨機(jī)抽樣的方法從“40歲以下”的人中抽取2人,從“40歲以上”的人中抽取1人,了解使用微信支付的情況,問至少有一人使用微信支付的概率為多少?
參考公式: ,n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.760 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,點(diǎn)P(0, ),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為 .直線l的參數(shù)方程為 為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)分別為A,B,求 + 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有xf′(x)>x2+3f(x),則不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集為( )
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且 .
(1)求sinB的值;
(2)若D為AC的中點(diǎn),且BD=1,求△ABD面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com