點P(m-n,-m)到直線
x
m
+
y
n
=1的距離等于
 
考點:點到直線的距離公式
專題:直線與圓
分析:利用點到直線的距離公式即可得出.
解答: 解:直線
x
m
+
y
n
=1化為nx+my-mn=0.
點P(m-n,-m)到直線的距離d=
|n(m-n)-m2-mn|
m2+n2
=
m2+n2

故答案為:
m2+n2
點評:本題考查了點到直線的距離公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若圓(x-3)2+(y+5)2=r2上有且只有三個點到直線4x-3y=2的距離等于l,則半徑r等于(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-2,2),B(-1,-1),若直線y=kx-2k+1與線段AB有公共點,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}各項均不為0,前n項和為Sn,bn=an3,bn的前n項和為Tn,且Tn=Sn2
(1)若數(shù)列{an}共3項,求所有滿足要求的數(shù)列;
(2)求證:an=n(n∈N*)是滿足已知條件的一個數(shù)列;
(3)請構(gòu)造出一個滿足已知條件的無窮數(shù)列{an},并使得a2015=-2014.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

斜率為l且原點到直線距離為
2
的直線方程為( 。
A、x+y+2=0或x+y-2=0
B、x+y+
2
=0或x+y-
2
=0
C、x-y+2=0或x-y-2=0
D、x-y+
2
=0或x-y-
2
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,2)、B(4,-4),P為x軸上一動點.
(1)若|PA|+|PB|有最小值時,求點P的坐標(biāo);
(2)若|PB|-|PA|有最大值時,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點A(2,3)關(guān)于直線x+y=0的對稱點A′的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若角A,B,C所對的三邊a,b,c成等差數(shù)列,給出下列結(jié)論:
①b2≥ac;②b2
a2+c2
2
;③
1
a
+
1
c
2
b
;④0<B≤
π
3

其中正確的結(jié)論是( 。
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log23•log3a<1,則a取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案