【題目】函數(shù)y=2x3﹣3x2﹣12x+5在區(qū)間[0,3]上最大值與最小值分別是( )
A.5,﹣15
B.5,﹣4
C.﹣4,﹣15
D.5,﹣16
【答案】A
【解析】解:由題意y'=6x2﹣6x﹣12 令y'>0,解得x>2或x<﹣1
故函數(shù)y=2x3﹣3x2﹣12x+5在(0,2)減,在(2,3)上增
又y(0)=5,y(2)=﹣15,y(3)=﹣4
故函數(shù)y=2x3﹣3x2﹣12x+5在區(qū)間[0,3]上最大值與最小值分別是5,﹣15
故選A
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子里有編號為的五個(gè)球,某位教師從袋中任取兩個(gè)不同的球. 教師把所取兩球編號的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個(gè)球的編號.
甲說:“我無法確定.”
乙說:“我也無法確定.”
甲聽完乙的回答以后,甲又說:“我可以確定了.”
根據(jù)以上信息, 你可以推斷出抽取的兩球中
A. 一定有3號球 B. 一定沒有3號球 C. 可能有5號球 D. 可能有6號球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,前n項(xiàng)和為, 是首項(xiàng)為2的等比數(shù)列,且公比大于0, ,, .
(Ⅰ)求和的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是( )
A.眾數(shù)
B.平均數(shù)
C.中位數(shù)
D.標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 M與圓N:(x﹣ )2+(y+ )2=r2關(guān)于直線y=x對稱,且點(diǎn)D(﹣ , )在圓M上.
(1)判斷圓M與圓N的公切線的條數(shù);
(2)設(shè)P為圓M上任意一點(diǎn),A(﹣1, ),B(1, ),P,A,B三點(diǎn)不共線,PG為∠APB的平分線,且交AB于G,求證:△PBG與△APG的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理中是演繹推理的序號為( )
A.由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可導(dǎo)電
B.猜想數(shù)列 {an}的通項(xiàng)公式為 (n∈N+)
C.半徑為r圓的面積S=πr2 , 則單位圓的面積S=π
D.由平面直角坐標(biāo)系中圓的方程為(x﹣a)2+(y﹣b)2=r2 , 推測空間直角坐標(biāo)系中球的方程為(x﹣a)2+(y﹣b)2+(z﹣c)2=r2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線與拋物線y2=4x相交于不同的A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1) 如果直線過拋物線的焦點(diǎn)且斜率為1,求的值;
(2)如果,證明:直線必過一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的一個(gè)焦點(diǎn)是, 為坐標(biāo)原點(diǎn),且橢圓短軸的兩個(gè)三等分點(diǎn)與一個(gè)焦點(diǎn)構(gòu)成正三角形,過點(diǎn)的直線交橢圓于點(diǎn).
(1)求橢圓的方程;
(2)設(shè)為橢圓上一點(diǎn),且滿足,當(dāng),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com