【題目】已知是定義在上的函數(shù),記,的最大值為.若存在,滿足,,,則稱一次函數(shù)逼近函數(shù)此時的稱為上的逼近確界”.

1)驗證,逼近函數(shù)

2)已知,.逼近函數(shù),求ab的值;

3)已知,,求證;對任意常數(shù)a,b.

【答案】1)見解析;(2ab;(3)見解析.

【解析】

1)記Gx)=2x2﹣(4x1)=2x121,x[02].利用二次函數(shù)的單調(diào)性可得|Gx|的最大值為1,且G0)=1G1)=﹣1,G2)=1

2Fxax+b),由,可得Ma,b)=ba.存在x0∈(0,4)滿足Fx2)=Mab),即FabmaxFx2)=b,即可得出.

3Mab|tat2b|.即可得出.

1)記Gx)=2x2﹣(4x1)=2x121,x[0,2].則|Gx|的最大值為1,

G0)=1G1)=﹣1,G2)=1.故y4x1gx)=2x2x[0,2]逼近函數(shù)

2Fxax+b),由,可得Mab)=b,a

存在x0∈(04)滿足Fx2)=Ma,b),即Fa,bmaxFx2)=b

Fxxbb,故x21

F1bb,可得b

3)證明:Mab|tat2b

|

[0,2]時,2Ma,b≥|b|+|24ab|≥|24a|1,故Ma,b

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)院為篩查某種疾病,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:①逐份檢驗,列需要檢驗次;②混合檢驗,將其)份血液樣本分別取樣混合在一起檢驗.若檢驗結果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為.

1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來的概率.

2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.

(i)運用概率統(tǒng)計的知識,若,試求關于的函數(shù)關系式;

(ii)若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)當時,證明: (其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當時,記在區(qū)間的最大值為,最小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),當時,恒成立,則的最大值是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCDBDEF均為菱形,,且

求證:平面BDEF;

求直線AD與平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】江心洲有一塊如圖所示的江邊,,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網(wǎng)建一個江水養(yǎng)殖場,有兩個方案:方案l:在岸邊上取兩點,用長度為的圍網(wǎng)依托岸邊線圍成三角形兩邊為圍網(wǎng));方案2:在岸邊上分別取點,用長度為的圍網(wǎng)依托岸邊圍成三角形.請分別計算面積的最大值,并比較哪個方案好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,焦點在軸上,左頂點為,左焦點為,點在橢圓上,直線與橢圓交于 兩點,直線 分別與軸交于點,

(Ⅰ)求橢圓的方程;

(Ⅱ)以為直徑的圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著自媒體直播平臺的迅猛發(fā)展,直播平臺上涌現(xiàn)了許多知名三農(nóng)領域創(chuàng)作者,通過直播或視頻播放,幫助當?shù)剞r(nóng)民在直播平臺上銷售了大量的農(nóng)產(chǎn)品,促進了農(nóng)村的經(jīng)濟發(fā)展,當?shù)剞r(nóng)業(yè)與農(nóng)村管理部門對近幾年的某農(nóng)產(chǎn)品年產(chǎn)量進行了調(diào)查,形成統(tǒng)計表如下:

年份

年份代碼

年產(chǎn)量(萬噸)

1)根據(jù)表中數(shù)據(jù),建立關于的線性回歸方程

2)根據(jù)線性回歸方程預測年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量;

3)從年到年的年年產(chǎn)量中隨機選出年的產(chǎn)量進行具體調(diào)查,求選出的年中恰有一年的產(chǎn)量小于萬噸的概率.

附:對于一組數(shù)據(jù)、,其回歸直線的斜率和截距的最小二乘估計分別為.(參考數(shù)據(jù):

查看答案和解析>>

同步練習冊答案