17.已知$f(x)={log_{\frac{1}{2}}}({1+x})-{log_{\frac{1}{2}}}({1-x})$
(1)求f(x)的定義域;
(2)求使f(x)>0成立的x的取值范圍.

分析 (1)根據(jù)對數(shù)函數(shù)的性質(zhì)求出函數(shù)的定義域即可;
(2)根據(jù)對數(shù)函數(shù)的單調(diào)性以及對數(shù)函數(shù)的定義得到關(guān)于x的不等式組,解出即可.

解答 解:(1)由題意得:
$\left\{\begin{array}{l}{1+x>0}\\{1-x>0}\end{array}\right.$,解得:-1<x<1,
故函數(shù)的定義域是(-1,1);
(2)若f(x)>0成立,
則${log}_{\frac{1}{2}}$(1+x)>${log}_{\frac{1}{2}}$(1-x),
則$\left\{\begin{array}{l}{1+x>0}\\{1-x>0}\\{1+x<1-x}\end{array}\right.$,解得:-1<x<0.

點評 本題考查了對數(shù)函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=-x2+2x+3在區(qū)間[-2,3]上的最大值為4,最小值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a>0,b>0,若不等式$\frac{m}{2a+b}-\frac{2}{a}-\frac{1}≤0$恒成立,則m的最大值為( 。
A.4B.16C.9D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{4^x}-a,x≥0\\{log_2}({-x})+a,x<0\end{array}\right.$,若f(1)=3,則f(-2)的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為了得到函數(shù)y=2×2x的圖象,可以把函數(shù)y=2x的圖象(  )
A.向左平移1個單位長度B.向右平移1個單位長度
C.向左平移2個單位長度D.向右平移2個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|-2<x<5},集合$B=\left\{{x\left|{2<{{({\frac{1}{2}})}^x}<16}\right.}\right\}$,集合C={x|m+1≤x≤2m-1},
(1)求A∩B,A∪B;
(2)若A∪C=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)的定義域為D,若存在閉區(qū)間[m,n]⊆D,使得函數(shù)f(x)滿足以下兩個條件:
(1)f(x)在[m,n]上是單調(diào)函數(shù);
(2)f(x)在[m,n]上的值域為[2m,2n],則稱區(qū)間[m,n]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有①③④(填上所有正確的序號)
①f(x)=x2(x≥0)
②f(x)=ex(x∈R)
③$f(x)=\frac{4x}{{{x^2}+1}}({x≥0})$
④$f(x)={log_2}({{2^x}-\frac{1}{8}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)y=sin(x+$\frac{π}{6}$)(x∈R)的圖象上所有的點向左平移$\frac{π}{4}$個單位長度,所得圖象的函數(shù)解析式為( 。
A.y=sin(x+$\frac{π}{12}$)B.y=sin(x-$\frac{π}{12}$)C.y=sin(x+$\frac{5π}{12}$)D.y=sin(x-$\frac{5π}{12}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在裝有相等數(shù)量的白球和黑球的口袋中放進(jìn)一個白球,此時由這個口袋中取出一個白球的概率比原來由此口袋中取出一個白球的概率大$\frac{1}{22}$,則口袋中原有小球的個數(shù)為(  )
A.5B.6C.10D.11

查看答案和解析>>

同步練習(xí)冊答案