如圖,在平面直角坐標系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且=0,求D2+E2-4F的值;
(3)設四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判斷點O、G、H是否共線,并說明理由.
(1)方法一:由題意,原點O必定在圓M內(nèi),即點(0,0)代入方程x2+y2+Dx+Ey+F=0的左邊所得的值小于0,于是有F<0,即證.
方法二:由題意,不難發(fā)現(xiàn)A、C兩點分別在x軸正、負半軸上.設兩點坐標分別為A(a,0),C(c,0),則有ac<0.對于圓的方程x2+y2+Dx+Ey+F=0,當y=0時,可得x2+Dx+F=0,其中方程的兩根分別為點A和點C的橫坐標,于是有xAxC=ac=F.因為ac<0,故F<0.
(2)不難發(fā)現(xiàn),對角線互相垂直的四邊形ABCD的面積
S=,因為S=8,
|AC|=2,可得|BD|=8.
又因為=0,所以∠BAD為直角,又因為四邊形是圓M的內(nèi)接四邊形,故|BD|=2r=8⇒r=4.
對于方程x2+y2+Dx+Ey+F=0所表示的圓,
可知+-F=r2,所以D2+E2-4F=4r2=64.
(3)設四邊形四個頂點的坐標分別為A(a,0),B(0,b),C(c,0),D(0,d).
則可得點G的坐標為(,),即=(,).
又=(-a,b),且AB⊥OH,故要使G、O、H三點共線,只需證=0即可.
而=,且對于圓M的一般方程x2+y2+Dx+Ey+F=0,
當y=0時可得x2+Dx+F=0,其中方程的兩根分別為點A和點C的橫坐標,
于是有xAxC=ac=F.
同理,當x=0時,可得y2+Ey+F=0,其中方程的兩根分別為點B和點D的縱坐標,于是有yByD=bd=F.
所以,==0,即AB⊥OG.
故O、G、H三點必定共線.
科目:高中數(shù)學 來源: 題型:
OP |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
A、偶函數(shù) | B、奇函數(shù) | C、不是奇函數(shù),也不是偶函數(shù) | D、奇偶性與k有關 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
6 |
1 |
6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
試問:是否存在定點E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com