20.已知f(x)=x2-px+q,集合A={x|f(x)=x}={2},求f(x)的表達式.

分析 題目轉(zhuǎn)化為x=2為方程x2-px+q=x的相等實根,由韋達定理可得.

解答 解:∵f(x)=x2-px+q,集合A={x|f(x)=x}={2},
∴x=2為方程x2-px+q=x即x2-(p+1)x+q=0的相等實根,
∴由韋達定理可得$\left\{\begin{array}{l}{2+2=p+1}\\{2×2=q}\end{array}\right.$,解得$\left\{\begin{array}{l}{p=3}\\{q=4}\end{array}\right.$,
∴f(x)的表達式為f(x)=x2-3x+4

點評 本題考查函數(shù)解析式求解的待定系數(shù)法,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC中,a,b,c分別為角A,B,C的對邊,且cos(B-C)-2sinBsinC=-$\frac{1}{2}$.
(1)求角A的大;
(2)當a=5,b=4時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.f(x+1)=$\sqrt{f(x)-{f}^{2}(x)}+\frac{1}{2}$,且f(1)=$\frac{1}{4}$,數(shù)列{an}滿足an=f2(n)-f(n),n∈N*,若其前n項和為:-$\frac{35}{16}$,則n的值為( 。
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知a>0,且不等式(x+t+$\frac{1}{t}$+a)2+(x-$\frac{1}{t}$-2)2≥50對于任意實數(shù)x∈R,t>0恒成立,則a的取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x+1)是周期為2的奇函數(shù),當x∈[-1,0]時,f(x)=-2x2-2x,則f(-$\frac{3}{2}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.濱湖區(qū)擬建一主題游戲園,該游戲園為四邊形區(qū)域ABCD,其中三角形區(qū)城ABC為主題活動區(qū),其中∠ACB=60°,∠ABC=45°,AB=12$\sqrt{6}$m;AD、CD為游客通道(不考慮寬度),且∠ADC=120°,通道AD、CD圍成三角形區(qū)域ADC為游客休閑中心,供游客休憩.
(1)求AC的長度;
(2)記游客通道AD與CD的長度和為L,求L的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=x-cos2x,則f($\frac{π}{16}$)+f($\frac{2π}{16}$)+f($\frac{3π}{16}$)+…+f($\frac{7π}{16}$)=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)f(x)=$\sqrt{4{x}^{2}-4x+1}+\sqrt{1-2x+{x}^{2}}$
(1)解不等式f(x)≥x+4.
(2)對任意的x,不等式f(x)≥(m2-3m+3)•|x|恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知(x2-x-ay)7的展開式中x7y2的系數(shù)為-$\frac{105}{2}$,a>0,則a=$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案