分析 (1)根據函數的奇偶性得到f(0)=0,求出a的值,根據單調性的定義證明即可;
(2)根據函數的單調性求出f(x)在x∈[-1,1]的值域,從而求出m的范圍即可.
解答 解:(1)f(x)是R上的奇函數,故f(0)=0,
故1-$\frac{2}{1+a}$=0,解得:a=1,
故f(x)=1-$\frac{2}{{2}^{x}+1}$,
x→+∞時,f(x)→1,
x→-∞時,f(x)→-1,
f(x)在R遞增,
證明如下:
設x1<x2,
則f(x1)-f(x2)
=1-$\frac{2}{{2}^{{x}_{1}}+1}$-1+$\frac{2}{{2}^{{x}_{2}}+1}$
=$\frac{2{(2}^{{x}_{1}}{-2}^{{x}_{2}})}{{(2}^{{x}_{1}}+1){(2}^{{x}_{2}}+1)}$,
∵x1<x2,∴${2}^{{x}_{1}}$<${2}^{{x}_{2}}$,
∴f(x1)<f(x2),
故f(x)在R遞增;
(2)由(1)f(x)在[-1,1]遞增,
而f(-1)=$\frac{1}{3}$,f(1)=$\frac{2}{3}$,
故x∈[-1,1]時,f(x)∈[$\frac{1}{3}$,$\frac{2}{3}$],
若關于x的方程f(x)=m在[-1,1]上有解,
則m∈[$\frac{1}{3}$,$\frac{2}{3}$].
點評 本題考查了函數的單調性問題,考查單調性的證明,是一道中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{15}{4}$ | B. | $\frac{15}{2}$ | C. | $\frac{7}{4}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|-1≤x<1} | B. | {x|x>1} | C. | {x|-1<x<1} | D. | {x|x≥-1} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ($\frac{1}{3}$,$\frac{2}{3}$) | B. | [$\frac{1}{3}$,$\frac{2}{3}$) | C. | ($\frac{1}{2}$,$\frac{2}{3}$) | D. | [$\frac{1}{2}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com