19.函數(shù)y=8-22-x(x≥0)的值域是[2,8).

分析 由x≥0求出2-x的范圍,根據(jù)指數(shù)函數(shù)y=2x的單調(diào)性,依次求出函數(shù)y=8-22-x的值域.

解答 解:由x≥0得,2-x≤2,
因?yàn)楹瘮?shù)y=2x在定義域上是增函數(shù),
所以22-x≤22=4,即y=8-22-x≥2,
所以函數(shù)y=8-22-x的值域是[2,8),
故答案為:[2,8).

點(diǎn)評(píng) 本題考查指數(shù)函數(shù)的單調(diào)性的應(yīng)用,考查整體思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a2=4,a42=4a1a5
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2a1+log2a2+log2a3+…+log2an,求數(shù)列{$\frac{1}{_{n}}$}的前n項(xiàng)和Sn,并證明:Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知拋物線C:y2=2px(p>0)過(guò)點(diǎn)M(m,2),其焦點(diǎn)為F,且|MF|=2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)E為y軸上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)E作不經(jīng)過(guò)原點(diǎn)的兩條直線分別與拋物線C和圓F:(x-1)2+y2=1相切,切點(diǎn)分別為A,B,求證:直線AB過(guò)定點(diǎn)F(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)右焦點(diǎn)F2的直線l與C相交于P,Q兩點(diǎn),若△F1PQ的周長(zhǎng)為短軸長(zhǎng)的2$\sqrt{2}$倍,拋物線y2=2$\sqrt{2}$x的焦點(diǎn)F滿(mǎn)足$\overrightarrow{{F}_{1}F}$=3$\overrightarrow{F{F}_{2}}$.
(I) 求橢圓C的方程;
(Ⅱ)若$\overrightarrow{P{F}_{2}}$=3$\overrightarrow{{F}_{2}Q}$,求直線l的方程;
(Ⅲ)若直線l的傾斜角α∈[$\frac{π}{6}$,$\frac{π}{2}$],求△F1PQ的內(nèi)切圓的半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.直線x-my-8=0與拋物線y2=8x交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△OAB面積的取值范圍是[64,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知角θ的終邊過(guò)點(diǎn)P(-12,5),則cosθ+sinθ=(  )
A.$-\frac{5}{12}$B.$-\frac{7}{13}$C.$\frac{12}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知命題p:直線y=kx+3與圓x2+y2=1相交于不同的兩點(diǎn)A,B;命題q:曲線$\frac{{x}^{2}}{k-6}$-$\frac{{y}^{2}}{k}$=1表示焦點(diǎn)在x軸上的雙曲線;
(1)若命題p為真命題,求實(shí)數(shù)k的取值范圍;
(2)若命題q為真命題,求實(shí)數(shù)k的取值范圍;
(3)若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+2,x>a\\ x{\;}^{2}+5x+2,x≤a\end{array}$函數(shù)g(x)=f(x)-2x恰有2個(gè)不同的零點(diǎn),則實(shí)數(shù)a 的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知點(diǎn)P在直線x+y=2上,A、B是圓x2+y2=1上的兩個(gè)動(dòng)點(diǎn),若∠APB的最大值是$\frac{π}{3}$,則點(diǎn)P的坐標(biāo)是(0,2)或(2,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案