【題目】已知a,b為正數(shù),直線y=x﹣2a+1與曲線y=ex+b﹣1相切,則的最小值為( 。
A. 9 B. 7 C. D.
【答案】D
【解析】
設(shè)切點(diǎn)為(m,n),由y=ex+b﹣1的導(dǎo)數(shù)y′=ex+b,可得切線的斜率為em+b=1,n=m﹣2a+1=em+b﹣1,化為2a+b=1,根據(jù)均值不等式可得到最值.
a,b為正數(shù),直線y=x﹣2a+1與曲線y=ex+b﹣1相切,
設(shè)切點(diǎn)為(m,n),由y=ex+b﹣1的導(dǎo)數(shù)y′=ex+b,
可得切線的斜率為em+b=1,n=m﹣2a+1=em+b﹣1,
化為2a+b=1,
則=(2a+b)()=3++≥3+2=3+2,
當(dāng)且僅當(dāng)b=a時(shí),上式取得等號(hào),
可得的最小值為3+2.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足,且.
(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,在處的切線方程為.
(1)求, ;
(2)若,證明: .
【答案】(1), ;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明.
試題解析:((1)由題意,所以,
又,所以,
若,則,與矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
當(dāng)時(shí), , 單調(diào)遞減,且;
當(dāng)時(shí), , 單調(diào)遞增;且,
所以在上當(dāng)單調(diào)遞減,在上單調(diào)遞增,且,
故,
故.
【點(diǎn)睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①函數(shù)與函數(shù)表示同一個(gè)函數(shù);
②奇函數(shù)的圖象一定通過直角坐標(biāo)系的原點(diǎn);
③函數(shù)的圖象可由的圖象向右平移1個(gè)單位得到;
④若函數(shù)的定義域?yàn)?/span>,則函數(shù)的定義域?yàn)?/span>;
⑤設(shè)函數(shù)是在區(qū)間上圖象連續(xù)的函數(shù),且,則方程在區(qū)間上至少有一實(shí)根.
其中正確命題的序號(hào)是________.(填上所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,E,F,G分別為,,AB的中點(diǎn).
求證:平面平面BEF;
若平面,求證:H為BC的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國(guó)民法總則》(以下簡(jiǎn)稱《民法總則》)自2017年10月1日起施行.作為民法典的開篇之作,《民法總則》與每個(gè)人的一生息息相關(guān).某地區(qū)為了調(diào)研本地區(qū)人們對(duì)該法律的了解情況,隨機(jī)抽取50人,他們的年齡都在區(qū)間上,年齡的頻率分布及了解《民法總則》的入數(shù)如下表:
年齡 | ||||||
頻數(shù) | 5 | 5 | 10 | 15 | 5 | 10 |
了解《民法總則》 | 1 | 2 | 8 | 12 | 4 | 5 |
(1)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為以45歲為分界點(diǎn)對(duì)了解《民法總則》政策有差異;
年齡低于45歲的人數(shù) | 年齡不低于45歲的人數(shù) | 合計(jì) | |
了解 | |||
不了解 | |||
合計(jì) |
(2)若對(duì)年齡在,的被調(diào)研人中各隨機(jī)選取2人進(jìn)行深入調(diào)研,記選中的4人中不了解《民法總則》的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
參考公式和數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位計(jì)劃在一水庫建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨(dú)立.
(1)求未來3年中,設(shè)表示流量超過120的年數(shù),求的分布列及期望;
(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù) | 1 | 2 | 3 |
若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤(rùn)為5000萬元,若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損800萬元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.已知隨機(jī)變量,若.則
B.已知分類變量與的隨機(jī)變量的觀察值為,則當(dāng)的值越大時(shí),“與有關(guān)”的可信度越小.
C.在線性回歸模型中,計(jì)算其相關(guān)指數(shù),則可以理解為:解析變量對(duì)預(yù)報(bào)變量的貢獻(xiàn)率約為
D.若對(duì)于變量與的組統(tǒng)計(jì)數(shù)據(jù)的線性回歸模型中,相關(guān)指數(shù).又知?dú)埐钇椒胶蜑?/span>.那么.(注意:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個(gè)小球,分別寫有“五、校、聯(lián)、考”四個(gè)字,從中任取一個(gè)小球,有放回抽取,直到取到“五”“校”二字就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率:利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“五、校、聯(lián)、考”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下16組隨機(jī)數(shù),由此可以估計(jì),恰好第三次就停止的概率為______
232 321 230 023 123 021 132 220
231 130 133 231 331 320 120 233
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com