17.設(shè)數(shù)列{an}是首項為0的遞增數(shù)列,函數(shù)fn(x)=|sin$\frac{1}{n}$(x-an)|,x∈[an,an-1]滿足:對于任意的實數(shù)m∈[0,1),fn(x)=m總有兩個不同的根,則{an}的通項公式是an=$\frac{n\;(n-1)\;π}{2}$.

分析 利用三角函數(shù)的圖象與性質(zhì)、誘導(dǎo)公式、數(shù)列的遞推關(guān)系可得an+1-an=nπ,再利用“累加求和”方法、等差數(shù)列的求和公式即可得出.

解答 解:∵a1=0,當(dāng)n=1時,f1(x)=|sin(x-a1)|=|sinx|,x∈[0,a2],
又∵對任意的b∈[0,1),f1(x)=b總有兩個不同的根,∴a2=π,
∴f1(x)=sinx,x∈[0,π],a2=π,
又f2(x)=|sin$\frac{1}{2}$(x-a2)|=|sin$\frac{1}{2}$(x-π)|=|cos$\frac{x}{2}$|,x∈[π,a3],
∵對任意的b∈[0,1),f1(x)=b總有兩個不同的根,∴a3=3π,
又f3(x)=|sin$\frac{1}{3}$(x-a3)|=|sin$\frac{1}{3}$(x-3π)|=|sin$\frac{1}{3}$π|,x∈[3π,a4],
∵對任意的b∈[0,1),f1(x)=b總有兩個不同的根,∴a4=6π,
由此可得an+1-an=nπ,
∴an=a1+(a2-a1)+…+(an-an-1)=0+π+…+(n-1)π=$\frac{n(n-1)}{2}$π,an=$\frac{n(n-1)}{2}$π.
故答案為:$\frac{n(n-1)}{2}$π.

點評 本題考查了三角函數(shù)的圖象與性質(zhì)、誘導(dǎo)公式、數(shù)列的遞推關(guān)系、“累加求和”方法、等差數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知sinx=$\frac{\sqrt{2}}{4}$,x∈(-$\frac{3π}{2}$,-π),則x的值為( 。
A.-π+arcsin$\frac{\sqrt{2}}{4}$B.-π-arcsin$\frac{\sqrt{2}}{4}$C.-$\frac{3π}{2}$+arcsin$\frac{\sqrt{2}}{4}$D.-2π+arcsin$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)y1=x1lnx1,函數(shù)y2=x2-3,則${({x_1}-{x_2})^2}+{({y_1}-{y_2})^2}$的最小值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.等腰三角形一腰上的高是$\sqrt{3}$,這條高與底邊的夾角為60°,則底邊長為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在極坐標系中,O為極點,已知圓C的圓心為$(1,\frac{π}{4})$,半徑r=1,點P在圓C上運動.
(Ⅰ)求圓C的極坐標方程;
(Ⅱ)在直角坐標系(與極坐標系取相同的長度單位,且以極點O為原點,以極軸為x軸正半軸)中,若Q為線段OP的中點,求點Q軌跡的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.曲線$y=\frac{2sinx}{πx}$過點P(π,0)的切線方程是( 。
A.x+y-π=0B.2x+2y-π=0C.2x-π2y-2π=0D.2x+π2y-2π=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在墻上掛著一塊邊長為16cm的正方形木板,上面畫了大、小兩個同心圓,半徑分別為2cm,6cm,某人站在3m之外向此板投鏢,設(shè)投鏢擊中線上或沒有投中木板時都不算(可重投),問:
(1)投中大圓內(nèi)的概率是多少?
(2)投中小圓與大圓形成的圓環(huán)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.等差數(shù)列{an}的前n項之和為Sn,已知a1>0,S12>0,S13<0,則S1,S2,S3,S4,…,S11,S12中最大的是( 。
A.S12B.S7C.S6D.S1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.以下四個命題中:
①在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模擬的擬合效果越好;
②兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近于1;
③對分類變量x與y的隨機變量k2的觀測值k來說,k越小,判斷“x與y無關(guān)系”的把握程度越大;
④對分類變量x與y的隨機變量k2的觀測值k來說,k越小,判斷“x與y有關(guān)系”的把握程度越大.
其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案