函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,則( 。
A、x=
1
2
為f(x)的極大值點(diǎn)
B、x=-2為f(x)的極大值點(diǎn)
C、x=2為f(x)的極大值點(diǎn)
D、x=0為f(x)的極小值點(diǎn)
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)圖象找到函數(shù)的單調(diào)區(qū)間,畫出函數(shù)的草圖,從而找到函數(shù)的極大值點(diǎn).
解答: 解:由圖象得;
函數(shù)f(x)在(-∞,-2)遞減,在(-2,
1
2
)遞增,
在(
1
2
,2)遞減,在(2,+∞)遞增,
畫出函數(shù)的草圖得:
,
由圖象得;x=
1
2
是函數(shù)f(x)的極大值點(diǎn),
故選;A.
點(diǎn)評:本題考察了函數(shù)的單調(diào)性,函數(shù)的極值問題,導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線kx-y-k+1=0(k∈R)過定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b=asinC,c=acosB,則△ABC的形狀為( 。
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=lnx,則f′(1)等于(  )
A、2B、eC、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有( 。
(1)用反證法證明:“三角形的內(nèi)角中至少有一個(gè)不大于60°”時(shí)的假設(shè)是“假設(shè)三角形的三個(gè)內(nèi)角都不大于60°;
(2)分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的充要條件;
(3)用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1),從k到k+1,左邊需要增乘的代數(shù)式為2(2k+1);
(4)演繹推理是從特殊到一般的推理,其一般模式是三段論.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足x+y=40且x,y都是正數(shù),則xy的最大值是(  )
A、400B、100
C、40D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-
y2
5
=1的焦點(diǎn)到漸近線的距離與頂點(diǎn)到漸近線的距離之比為( 。
A、
3
2
B、
2
3
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx在點(diǎn)(
π
3
,
3
2
)處的切線方程是( 。
A、x+2y-
3
+
π
3
=0
B、x+2y+
3
-
π
3
=0
C、x-2y-
3
+
π
3
=0
D、x-2y+
3
-
π
3
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos(
π
2
-x)cosx是( 。
A、最小正周期為π的奇函數(shù)
B、最小正周期為
π
2
的奇函數(shù)
C、最小正周期為π的偶函數(shù)
D、最小正周期為
π
2
的偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案