設(shè)f(x)=
ex,x<1
-2x+
a
0
2tdt,x≥1
,若f(f(0))=a,則a=
2
2
分析:由題意可求f(0),然后代入f(f(0))=f(1)=-2+
a
0
2tdt
,根據(jù)積分基本定理即可求解
解答:解:由題意可得f(0)=e0=1
∴f(f(0))=f(1)=-2+
a
0
2tdt
=-2+
t2|
a
0
=-2+a2=a
∴a2-a-2=0
∴a=2或a=-1
∵a>0
∴a=2
故答案為:2
點評:本題主要考查了分段函數(shù)的函數(shù)值的求解及積分基本定理的簡單應(yīng)用,求解中要注意準(zhǔn)確求出被積函數(shù)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
ex,x≤1
f(x-1),x>1
,則f(3+ln3)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)=
ex,x<2
log3(x-1),x≥2.
,則f(f(f(10)))的值是( �。�
A.1B.2C.eD.e2

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�