【題目】已知函數(shù)f(x)=loga(x+1)﹣loga(1﹣x),a>0且a≠1.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明.
【答案】
(1)解:由題得,使解析式有意義的x范圍是使不等式組 成立的x范圍,解得﹣1<x<1,
所以函數(shù)f(x)的定義域為{x|﹣1<x<1}
(2)解:函數(shù)f(x)為奇函數(shù),
證明:由(1)知函數(shù)f(x)的定義域關于原點對稱,
且f(﹣x)=loga(﹣x+1)﹣loga(1+x)=﹣loga(1+x)+loga(1﹣x)=﹣[loga(1+x)﹣loga(1﹣x)]=﹣f(x)
所以函數(shù)f(x)為奇函數(shù)
【解析】(1)使函數(shù)各部分都有意義的自變量的范圍,即列出不等式組 ,解此不等式組求出x范圍就是函數(shù)的定義域;(2)根據(jù)函數(shù)奇偶性的定義進行證明即可.
【考點精析】解答此題的關鍵在于理解函數(shù)的定義域及其求法的相關知識,掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零,以及對函數(shù)的奇偶性的理解,了解偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱.
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=﹣3x2+a(6﹣a)x+b,a,b為實數(shù).
(1)當b=﹣6時,解關于a的不等式f(1)>0;
(2)若不等式f(x)>0的解集為(﹣1,3),求實數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系 中,以坐標原點O為極點,以x軸正半軸為極軸建立極坐標系.已知曲線 (t為參數(shù)),曲線 ;
(1)將曲線 化成普通方程,將曲線 化成參數(shù)方程;
(2)判斷曲線 和曲線 的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱長為a,E是棱DD1的中點
(1)求三棱錐E﹣A1B1B的體積;
(2)在棱C1D1上是否存在一點F,使B1F∥平面A1BE?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合,若對于任意,存在,使得成立,則稱集合是“好集合”.給出下列4個集合:①;②;③;④.其中為“好集合”的序號是( )
A. ①②④ B. ②③ C. ③④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在心理學研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.
(I)求接受甲種心理暗示的志愿者中包含A1但不包含的頻率。
(II)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學期望EX.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的展開式的二項式系數(shù)之和為32,且展開式中含x3項的系數(shù)為80.
(1)求m和n的值;
(2)求展開式中含x2項的系數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)濟學中,函數(shù)f(x)的邊際函數(shù)M(x)定義為M(x)=f(x+1)﹣f(x),利潤函數(shù)p(x)邊際利潤函數(shù)定義為M1(x)=p(x+1)﹣p(x),某公司最多生產 100 臺報系統(tǒng)裝置,生產x臺的收入函數(shù)為R(x)=3000x﹣20x2(單位:元),其成本函數(shù)為C(x)=500x+4000x(單位:元),利潤是收入與成本之差.
(1)求利潤函數(shù)p(x)及邊際利潤函數(shù)M1(x);
(2)利潤函數(shù)p(x)與邊際利潤函數(shù)M1(x)是否具有相等的最大值?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com