【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求證:當(dāng)時(shí),.

【答案】(1)f(x)的單調(diào)增區(qū)間為(1,+∞), 單調(diào)減區(qū)間為(0,1);(2)見解析.

【解析】

(Ⅰ)明確定義域,求出導(dǎo)函數(shù),解不等式即可得到函數(shù)的單調(diào)區(qū)間;

(Ⅱ)作差構(gòu)造新函數(shù),研究函數(shù)的最值即可.

(1)依題意知函數(shù)的定義域?yàn)?/span>{x|x>0}

f′(x)2x-2=

f′(x)>0, x>1; f′(x)<0, 0<x<1

f(x)的單調(diào)增區(qū)間為(1,+∞), 單調(diào)減區(qū)間為(0,1)

(2)設(shè)g(x)fx-3x+1=x22lnx-3x+4,

g′(x)2x-2--3=,

當(dāng)x>2時(shí),g′(x)>0,

g(x)(2,+∞)上為增函數(shù),

g(x)>g(2)4-2ln2-6+4>0,

當(dāng)x>2時(shí), x2-2lnx>3x-4,

即當(dāng)x>2時(shí)..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),判斷是否為的極值點(diǎn),并說(shuō)明理由;

(2)記.若函數(shù)存在極大值,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)在一個(gè)選拔項(xiàng)目中,每個(gè)選手都需要進(jìn)行4輪考核,每輪設(shè)有一個(gè)問(wèn)題,能正確回答者進(jìn)入下一輪考核,否則被淘汰。已知某選手能正確回答第一、二、三、四輪問(wèn)題的概率分別為、,且各輪問(wèn)題能否正確回答互不影響。

)求該選手進(jìn)入第三輪才被淘汰的概率;

)求該選手至多進(jìn)入第三輪考核的概率;

)該選手在選拔過(guò)程中回答過(guò)的問(wèn)題個(gè)數(shù)記為,求隨機(jī)變量的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

若函數(shù)內(nèi)有且只有一個(gè)零點(diǎn),求此時(shí)函數(shù)的單調(diào)區(qū)間;

當(dāng)時(shí),若函數(shù)上的最大值和最小值的和為1,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)上的單調(diào)性,并證明你的結(jié)論;

(2)當(dāng)時(shí),若不等式對(duì)于恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),求處的切線方程;

(Ⅱ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】14分)已知ab為常數(shù),且a≠0,函數(shù)fx=﹣ax+b+axlnx,fe=2e=2.71828…是自然對(duì)數(shù)的底數(shù)).

I)求實(shí)數(shù)b的值;

II)求函數(shù)fx)的單調(diào)區(qū)間;

III)當(dāng)a=1時(shí),是否同時(shí)存在實(shí)數(shù)mMmM),使得對(duì)每一個(gè)t∈[m,M],直線y=t與曲線y=fx)(x∈[e])都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)m和最大的實(shí)數(shù)M;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù),為自然對(duì)數(shù)的底數(shù).

1)當(dāng)時(shí),求的最大值;

2)若在區(qū)間上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,,,,平面平面,點(diǎn)上一點(diǎn).

(1)若平面,求證:點(diǎn)中點(diǎn);

(2)求證:平面平面

查看答案和解析>>

同步練習(xí)冊(cè)答案