(滿分20分)本題有2小題,第1小題12分,第2小題8分.
已知數(shù)列{}和{}滿足:對于任何,有,為非零常數(shù)),且
(1)求數(shù)列{}和{}的通項(xiàng)公式;
(2)若的等差中項(xiàng),試求的值,并研究:對任意的,是否一定能是數(shù)列{}中某兩項(xiàng)(不同于)的等差中項(xiàng),并證明你的結(jié)論.

解析(1)【解一】由得,

,,
所以,{}是首項(xiàng)為1,公比為的等比數(shù)列,.…………………………….5分
,得

所以,當(dāng)時(shí),……………………………………………….6分
上式對顯然成立.………………………………………………………………………..1分
【解二】猜測,并用數(shù)學(xué)歸納法證明…………………………………………….5分
的求法如【解一】  ………………………………………………………………………..7分
【解三】猜測,并用數(shù)學(xué)歸納法證明………………………….7分
  …………………………………………………………………..5分
(2)當(dāng)時(shí),不是的等差中項(xiàng),不合題意;……………………………….1分
當(dāng)時(shí),由,
(可解得)..…………………………………………2分
對任意的,的等差中項(xiàng). .………………………………….2分
證明:,
,                    .………………………………….3分
即,對任意的,的等差中項(xiàng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年上海市閘北區(qū)高三第一學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(滿分20分)本題有2小題,第1小題12分,第2小題8分.

已知數(shù)列{}和{}滿足:對于任何,有,為非零常數(shù)),且

(1)求數(shù)列{}和{}的通項(xiàng)公式;

(2)若的等差中項(xiàng),試求的值,并研究:對任意的,是否一定能是數(shù)列{}中某兩項(xiàng)(不同于)的等差中項(xiàng),并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年上海市閘北區(qū)高三第一學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(滿分20分)本題有2小題,第1小題12分,第2小題8分.

設(shè)為定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052210013201562023/SYS201205221003005937552931_ST.files/image002.png">的函數(shù),對任意,都滿足:,,且當(dāng)時(shí),

(1)請指出在區(qū)間上的奇偶性、單調(diào)區(qū)間、最大(。┲岛土泓c(diǎn),并運(yùn)用相關(guān)定義證明你關(guān)于單調(diào)區(qū)間的結(jié)論;

(2)試證明是周期函數(shù),并求其在區(qū)間上的解析式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(滿分20分)本題有2小題,第1小題12分,第2小題8分.

已知數(shù)列{}和{}滿足:對于任何,有,為非零常數(shù)),且

(1)求數(shù)列{}和{}的通項(xiàng)公式;

(2)若的等差中項(xiàng),試求的值,并研究:對任意的,是否一定能是數(shù)列{}中某兩項(xiàng)(不同于)的等差中項(xiàng),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(滿分20分)本題有2小題,第1小題12分,第2小題8分.

設(shè)為定義域?yàn)?img width=17 height=17 src="http://thumb.zyjl.cn/pic1/0688/318/255318.gif" >的函數(shù),對任意,都滿足:,,且當(dāng)時(shí),

(1)請指出在區(qū)間上的奇偶性、單調(diào)區(qū)間、最大(。┲岛土泓c(diǎn),并運(yùn)用相關(guān)定義證明你關(guān)于單調(diào)區(qū)間的結(jié)論;

(2)試證明是周期函數(shù),并求其在區(qū)間上的解析式.

查看答案和解析>>

同步練習(xí)冊答案