如圖E、F是以線段BC為公共弦的兩條圓弧的中點,BC=6.點A、D分別為線段EF、BC上的動點.連接AB、AD,設(shè)BD=x,AB2-AD2=y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.
【答案】分析:由圖形及題設(shè)條件中的數(shù)據(jù)知,可延長EF交BC于O,則AB2=BO2+AO2,AD2=AO2+DO2,兩者作差即可得到y(tǒng)關(guān)于x的解析式,由解析式的類型選擇出函數(shù)的圖象即可
解答:解:由題意如圖可延長EF交BC于O,E、F是以線段BC為公共弦的兩條圓弧的中點故O是BC中點
AB2=BO2+AO2,AD2=AO2+DO2,
故y=AB2-AD2=BO2-DO2,
又BD=x,BC=6,當(dāng)D在BO上時,DO=3-x;當(dāng)D在OC上時DO=x-3
故有y=BO2-DO2=,即y=6x-x2,0<x≤6
故選D
點評:本題考查函數(shù)的圖象,解答本題關(guān)鍵是根據(jù)所給的題設(shè)條件建立起函數(shù)關(guān)系式,由于所得的函數(shù)解析式是一個二次函數(shù)的形式,由二次函數(shù)的性質(zhì)選出函數(shù)的圖象.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖E、F是以線段BC為公共弦的兩條圓弧的中點,BC=6.點A、D分別為線段EF、BC上的動點.連接AB、AD,設(shè)BD=x,AB2-AD2=y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:
如圖,點A是以線段BC為直徑的圓O上一點,AD⊥BC于點D,過點B作圓O的切線,與CA的延長線相交于點E,點G是AD的中點,連接CG并延長與BE相交于點F,延長AF與CB的延長線相交于點P.
(1)求證:BF=EF;
(2)求證:PA是圓O的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省鄭州大學(xué)附中高三(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

選修4-1:
如圖,點A是以線段BC為直徑的圓O上一點,AD⊥BC于點D,過點B作圓O的切線,與CA的延長線相交于點E,點G是AD的中點,連接CG并延長與BE相交于點F,延長AF與CB的延長線相交于點P.
(1)求證:BF=EF;
(2)求證:PA是圓O的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南師大附中高三(上)11月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

選修4-1:
如圖,點A是以線段BC為直徑的圓O上一點,AD⊥BC于點D,過點B作圓O的切線,與CA的延長線相交于點E,點G是AD的中點,連接CG并延長與BE相交于點F,延長AF與CB的延長線相交于點P.
(1)求證:BF=EF;
(2)求證:PA是圓O的切線.

查看答案和解析>>

同步練習(xí)冊答案