如右圖所示的直觀圖,其平面圖形的面積為
A.3B.C.6D.3
C


設(shè)原圖形為△AOB,且△AOB的直觀圖為△A'OB',如圖
∵OA'=2,OB'=3,∠A'OB'=45°∴OA=4,OB=3,∠AOB=90°,因此,Rt△AOB的面積為S=×4×3=6,
故答案為:C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn), 截面DEF∥底面ABC, 且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)

(1)求證:P-ABC為正四面體;
(2)棱PA上是否存在一點(diǎn)M,使得BM與面ABC所成的角為45°?若存在,求出點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由。
(3)設(shè)棱臺(tái)DEF-ABC的體積為V=, 是否存在體積為V且各棱長(zhǎng)均相等的平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和,并且該平行六面體的一條側(cè)棱與底面兩條棱所成的角均為60°? 若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)平行六面體,并給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)如圖,在四棱錐中,平面平面為等邊三角形,底面為菱形,的中點(diǎn),。
 
(1)求證:平面;
(2) 求四棱錐的體積
(3)在線段上是否存在點(diǎn),使平面;  若存在,求出的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題12分)如圖,在側(cè)棱錐垂直底面的四棱錐ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F(xiàn)是平面B1C1E
與直線AA1的交點(diǎn)。
(1)證明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,在梯形中,,,,平面平面,四邊形是矩形,,點(diǎn)在線段上.

(1)求證:平面BCF⊥平面ACFE;
(2)當(dāng)為何值時(shí),∥平面?證明你的結(jié)論;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,一個(gè)簡(jiǎn)單空間幾何體的三視圖其主視圖與左視圖都是邊長(zhǎng)為的正三角形,其俯視圖輪廓為正方形,則其體積是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

棱長(zhǎng)為2的正四面體ABCD(如圖),其正視圖是底邊長(zhǎng)為2的等腰三角形,則其側(cè)視圖面積是___

A

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知某個(gè)幾何體的三視圖如右側(cè),根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

有一個(gè)幾何體的三視圖及其尺寸如下(單位),則該幾何體的表面積及體積為:
A.,B.,
C.D.以上都不正確

查看答案和解析>>

同步練習(xí)冊(cè)答案