分析 (1)由條件$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}=\frac{{n}^{2}}{2}$,得n≥2時(shí),$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n-1}}=\frac{(n-1)^{2}}{2}$,兩式相減即可求得通項(xiàng)公式;
(2)$_{n}={a}_{n}{a}_{n+1}=\frac{4}{(2n-1)(2n+1)}$,采用裂項(xiàng)相消,即可求出{bn}的前n項(xiàng)和Sn.
解答 (本小題滿分12分)
解析:(1)當(dāng)n=1時(shí),$\frac{1}{{a}_{1}}=\frac{1}{2}$,∴a1=2,
當(dāng)n≥2時(shí),$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}=\frac{{n}^{2}}{2}$,①
$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n-1}}=\frac{(n-1)^{2}}{2}$,②
①-②得,$\frac{1}{{a}_{n}}=\frac{{n}^{2}}{2}-\frac{(n-1)^{2}}{2}=\frac{2n-1}{2}$,
∴n≥2時(shí),${a}_{n}=\frac{2}{2n-1}$.
又a1=2滿足上式,
∴${a}_{n}=\frac{2}{2n-1}$.
(2)∵bn=anan+1=$\frac{2}{2n-1}•\frac{2}{2n+1}$=2($\frac{1}{2n-1}-\frac{1}{2n+1}$),
∴${S}_{n}=2(1-\frac{1}{3})+2(\frac{1}{3}-\frac{1}{5})+…+2(\frac{1}{2n-1}-\frac{1}{2n+1})$=2($1-\frac{1}{2n+1}$)=$\frac{4n}{2n+1}$.
點(diǎn)評(píng) 本題主要考查了利用數(shù)列的遞推公式an=Sn-Sn-1求解數(shù)列的通項(xiàng)公式,以及裂項(xiàng)相消求數(shù)列的前n項(xiàng).需注意的是在求通項(xiàng)公式時(shí)不要漏掉對(duì)n=1的檢驗(yàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com