【題目】設(shè)ab,c表示三條不同的直線,M表示平面,給出下列四個(gè)命題:其中正確命題的個(gè)數(shù)有(

①若a//M,b//M,則a//b

②若bM,a//b,則a//M

③若ac,bc,則a//b

④若a//c,b//c,則a//b.

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

【答案】B

【解析】

由空間直線的位置關(guān)系及空間直線與平面的位置關(guān)系逐一判斷即可得解.

解:對(duì)于①,若a//Mb//M,則a//b相交或異面,即①錯(cuò)誤;

對(duì)于②,若bM,a//b,則a//MaM,即②錯(cuò)誤;

對(duì)于③,若ac,bc,則a//b相交或異面,即③錯(cuò)誤;

對(duì)于④,若a//cb//c,由空間直線平行的傳遞性可得a//b,即④正確,

即正確命題的個(gè)數(shù)有1個(gè),

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)log4(4x1)kx(k∈R)是偶函數(shù).

(1)k的值;

(2)設(shè)g(x)log4,若函數(shù)f(x)g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=2x.

(1)f(x)=,求x的值;

(2)2tf(2t)+mf(t)≥0對(duì)于t[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)隨機(jī)詢問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如表的列聯(lián)表:

總計(jì)

愛(ài)好

40

20

60

不愛(ài)好

20

30

50

總計(jì)

60

50

110

0.050

0.010

0.001

k

3.841

6.635

10.828

算得,.見(jiàn)附表:參照附表,得到的正確結(jié)論是( 。

A. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

B. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

C. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

D. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線C的極坐標(biāo)方程為ρ4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過(guò)點(diǎn)M1,0),傾斜角為

)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;

)若曲線C經(jīng)過(guò)伸縮變換后得到曲線C′,且直線l與曲線C′交于AB兩點(diǎn),求|MA|+|MB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)高鐵的快速發(fā)展給群眾出行帶來(lái)巨大便利,極大促進(jìn)了區(qū)域經(jīng)濟(jì)社會(huì)發(fā)展.已知某條高鐵線路通車后,發(fā)車時(shí)間間隔(單位:分鐘)滿足,經(jīng)測(cè)算,高鐵的載客量與發(fā)車時(shí)間間隔相關(guān):當(dāng)時(shí)高鐵為滿載狀態(tài),載客量為人;當(dāng)時(shí),載客量會(huì)在滿載基礎(chǔ)上減少,減少的人數(shù)與成正比,且發(fā)車時(shí)間間隔為分鐘時(shí)的載客量為.記發(fā)車間隔為分鐘時(shí),高鐵載客量為.

的表達(dá)式;

若該線路發(fā)車時(shí)間間隔為分鐘時(shí)的凈收益(元),當(dāng)發(fā)車時(shí)間間隔為多少時(shí),單位時(shí)間的凈收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象頂點(diǎn)為,且圖象在軸上截得的線段長(zhǎng)為8.

(1)求函數(shù)的解析式;

(2)令.

(。┣蠛瘮(shù)上的最小值;

(ⅱ)若時(shí),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)exex(xRe為自然對(duì)數(shù)的底數(shù))

(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性.

(2)解關(guān)于t不等式f(xt)f(x22t)≥0對(duì)一切實(shí)數(shù)x都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著節(jié)能減排意識(shí)深入人心,共享單車在各大城市大范圍推廣,越來(lái)越多的市民在出行時(shí)喜歡選擇騎行共享單車.為了研究廣大市民在共享單車上的使用情況,某公司在我市隨機(jī)抽取了100名用戶進(jìn)行調(diào)查,得到如下數(shù)據(jù):

每周使用次數(shù)

1次

2次

3次

4次

5次

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合計(jì)

10

8

7

11

14

50

(1)如果用戶每周使用共享單車超過(guò)3次,那么認(rèn)為其“喜歡騎行共享單車”.請(qǐng)完成下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否“喜歡騎行共享單車”與性別有關(guān);

不喜歡騎行共享單車

喜歡騎行共享單車

合計(jì)

合計(jì)

(2)每周騎行共享單車6次及6次以上的用戶稱為“騎行達(dá)人”,將頻率視為概率,在我市所有的“騎行達(dá)人”中隨機(jī)抽取4名,求抽取的這4名“騎車達(dá)人”中,既有男性又有女性的概率.

附表及公式:,其中

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案