【題目】某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過(guò)5噸時(shí),每噸為元,當(dāng)用水超過(guò)5噸時(shí),超過(guò)部分每噸4元。某月甲、乙兩戶共交水費(fèi)元,已知甲、乙兩戶該月用水量分別為噸。

(1)關(guān)于的函數(shù)。

(2)若甲、乙兩戶該月共交水費(fèi)元,分別求甲、乙兩戶該月的用水量和水費(fèi)。

【答案】12)甲戶該月的用水量為噸、水費(fèi)為元,乙戶該月的用水量為噸、水費(fèi)為

【解析】試題分析:1)由題意知:x≥0,令5x=5,得x=1;令3x=5,得x=,x取值范圍分三段,求對(duì)應(yīng)函數(shù)解析式可得答案.(2)在分段函數(shù)各定義域上根據(jù)單調(diào)性討論函數(shù)的值域,可以發(fā)現(xiàn)只有當(dāng)時(shí),令,解得,則甲、乙兩戶該月的用水量和水費(fèi)即得解.

試題解析:

1)當(dāng)甲的用水量不超過(guò)噸時(shí),即, 時(shí),乙的用水量也不超過(guò)噸,

當(dāng)甲的用水量超過(guò)噸,乙的用水量不超過(guò)噸,即 時(shí),

;

當(dāng)乙的用水量超過(guò)噸,即, 時(shí),

.

所以

2)由于在各段區(qū)間上均單調(diào)增,

當(dāng)時(shí),

當(dāng)時(shí), ;

當(dāng)時(shí),令,解得.

所以甲戶用水量為(噸),付費(fèi) ()

乙戶用水量為(噸),付費(fèi) ()

答:甲戶該月的用水量為噸、水費(fèi)為元,乙戶該月的用水量為噸、水費(fèi)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】做一個(gè)無(wú)蓋的圓柱形水桶,若要使其體積是,且用料最省,則圓柱的底面半徑為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的四棱錐,四邊形正方形,,,、分別、、中點(diǎn),.

⑴證明:

,求二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是偶函數(shù).

1)求的值;

2)設(shè),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知橢圓,其中,分別為其左,右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn),,且

(1)當(dāng),,且時(shí),求的值;

(2)若,試求橢圓離心率的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班從6名班干部中其中男生4人,女生2人,任選3人參加學(xué)校的義務(wù)勞動(dòng).

1設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;

2求男生甲或女生乙被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式組

(1) 若k=1,求不等式組的解集;

(2) 若不等式組的整數(shù)解的集合為{-2},求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且此函數(shù)圖象過(guò)點(diǎn)(1,5)

(1)求實(shí)數(shù)m的值;

(2)判斷函數(shù)f(x)(0,2)上的單調(diào)性?并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,S1=-,an-4SnSn-1=0(n≥2).

(1) 若bn,求證:{bn}是等差數(shù)列;

(2) 求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案