已知圓C的半徑為1,圓心C在直線l1:上,且其橫坐標(biāo)為整數(shù),又圓C截直線所得的弦長為

(I )求圓C的標(biāo)準(zhǔn)方程;

(II)設(shè)動點(diǎn)P在直線上,過點(diǎn)P作圓的兩條切線PA, PB,切點(diǎn)分別為A ,B求四邊形PACB面積的最小值.

 

【答案】

(Ⅰ)設(shè)圓心C的坐標(biāo)為(2a,3a),a∈Z,則由題意可知:

,

解得:a=1.

∴所求圓C的標(biāo)準(zhǔn)方程為:(x-2)2+(y-3)2=1.   ……………………………4分

(Ⅱ)因CA⊥PA,CB⊥PB,|PA|=|PB|,|AC|=1,

故S四邊形PACB=2S△PAC=|AC|·|PA|=|PA|=

顯然當(dāng)PC⊥l0時,|PC|取得最小值,

∴ |PC|min=

此時

即四邊形PACB面積的最小值為

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的半徑為2,圓心在x軸正半軸上,直線3x-4y+4=0與圓C相切
(1)求圓C的方程
(2)過點(diǎn)Q(0,-3)的直線l與圓C交于不同的兩點(diǎn)A(x1,y1),B(x2,y2)且為x1x2+y1y2=3時求:△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的半徑為1,半徑OA、OB的夾角為θ(0<θ<π),θ為常數(shù),點(diǎn)C為圓O上的動點(diǎn),若
OC
=x
OA
+y
OB
(x,y∈R)
,則x+y的最大值為
1
cos
θ
2
1
cos
θ
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省東北育才學(xué)校高一下學(xué)期期中考試數(shù)學(xué)試題 題型:解答題

(本題滿分12分)如圖,已知圓O的半徑為1,點(diǎn)C在直徑AB的延長線上,BC=1,點(diǎn)P是圓O上半圓上的一個動點(diǎn),以PC為邊作正三角形PCD,且點(diǎn)D
與圓心分別在PC兩側(cè).
(1)若,試將四邊形OPDC的面積y表示成的函數(shù);
(2)求四邊形OPDC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(全國卷1)解析版(理) 題型:選擇題

 已知圓O的半徑為1,PA、PB為該圓的兩條切線,A、B為倆切點(diǎn),那么的最小值為

 (A)      (B)   (C)   (D)

 

查看答案和解析>>

同步練習(xí)冊答案