(本大題9分)袋中有2個紅球,n個白球,各球除顏色外均相同.已知從袋中摸出2個球均為白球的概率為,(Ⅰ)求n;(Ⅱ)從袋中不放回的依次摸出三個球,記ξ為相鄰兩次摸出的球不同色的次數(shù)(例如:若取出的球依次為紅球、白球、白球,則ξ=1),求隨機變量ξ的分布列及其數(shù)學(xué)期望Eξ.

(1)n=4
(2)
P(=   P(=      Eξ=

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)某項計算機考試按科目A、科目B依次進行,只有大拿感科目A成績合格時,才可繼續(xù)參加科目B的考試,已知每個科目只允許有一次補考機會,兩個科目均合格方快獲得證書,現(xiàn)某人參加這項考試,科目A每次考試成績合格的概率為,科目B每次考試合格的概率為,假設(shè)各次考試合格與否均互不影響.
(Ⅰ)求他不需要補考就可獲得證書的概率;
(Ⅱ)在這次考試過程中,假設(shè)他不放棄所有的考試機會,記他參加考試的次數(shù)為,求隨即變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)為了解初三學(xué)生女生身高情況,某中學(xué)對初三女生身高進行了一次抽樣調(diào)查,根據(jù)所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別       頻數(shù)   頻率   
145.5~149.5      1       0.02   
149.5~153.5      4       0.08   
153.5~157.5    22     0.44   
157.5~161.5      13      0.26   
161.5~165.5      8       0.16   
165.5~169.5     m       n  
合 計        M       N  
(1)求出表中所表示的數(shù)m,n,M,N分別是多少?
(2)畫出頻率分布直方圖和頻率分布折線圖.
(3)若要從中再用分層抽樣方法抽出10人作進一步調(diào)查,則身高在[153.5,161.5)范圍內(nèi)的應(yīng)抽出多少人?
(4)根據(jù)頻率分布直方圖,分別求出被測女生身高的眾數(shù),中位數(shù)和平均數(shù)?(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)某種有獎銷售的飲料,瓶蓋內(nèi)印有“獎勵一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內(nèi)印有“獎勵一瓶”字樣即為中獎,中獎概率為。甲、乙、丙三位同學(xué)每人購買了一瓶該飲料。
(1)求甲中獎且乙、丙沒有中獎的概率;
(2)求中獎人數(shù)的分布列及數(shù)學(xué)期望E。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.已知關(guān)于x的一元二次方程x-2(a-2)x-b+16=0.
(1)若a、b是一枚骰子先后投擲兩次所得到的點數(shù),求方程有兩個正實數(shù)根的概率;
(2)若a∈[2,6],b∈[0,4],求一元二次方程沒有實數(shù)根的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)某校在一次趣味運動會的頒獎儀式上,高一、高二、高三各代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就坐,其中高二代表隊有6人.
(Ⅰ)求n的值;
(Ⅱ)把在前排就坐的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;
(Ⅲ)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個之間的均勻隨機數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,求該代表中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人做出拳游戲(錘子、剪刀、布),錘子記為“⊥”,剪刀記為“×”,布記為“□”
求:(1)列出實驗所有可能的結(jié)果(2)平局的概率;(3)甲贏的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三人分別獨立的進行某項技能測試,已知甲能通過測試的概率是,甲、乙、丙三人都能通過測試的概率是,甲、乙、丙三人都不能通過測試的概率是,且乙通過測試的概率比丙大.
(Ⅰ)求乙、丙兩人各自通過測試的概率分別是多少;
(Ⅱ)求測試結(jié)束后通過的人數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.(8分)設(shè)集合,, 若
(1) 求b = c的概率;
(2)求方程有實根的概率.

查看答案和解析>>

同步練習(xí)冊答案