某商場(chǎng)若將進(jìn)貨單價(jià)為8元的商品按每件10元出售,每天可銷售100現(xiàn)準(zhǔn)備采用提高售價(jià),減少進(jìn)貨量的辦法來(lái)增加利潤(rùn),已知這種商品每件銷售價(jià)提高1,銷售量就要減少10,問(wèn)該商場(chǎng)將銷售價(jià)每件定為多少元時(shí),才能使得每天所賺的利潤(rùn)最多?銷售價(jià)每件定為多少元時(shí)才能保證每天所賺的利潤(rùn)在300元以上?

 

4x4.

【解析】設(shè)每件提高x(0≤x≤10),即每件獲利潤(rùn)(2x)每天可銷售(10010x),設(shè)每天獲得總利潤(rùn)為y,由題意有y(2x)(10010x)=-10x280x200=-10(x4)2360.所以當(dāng)x4時(shí),ymax360,即當(dāng)定價(jià)為每件14元時(shí),每天所賺利潤(rùn)最多.

要使每天利潤(rùn)在300元以上,則有-10x280x200300,x28x100,解得4x4.故每件定價(jià)在(14)元到(14)元之間時(shí),能確保每天賺300元以上.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第四章第1課時(shí)練習(xí)卷(解析版) 題型:填空題

已知點(diǎn)P△ABC所在的平面內(nèi),2343△PAB△PBC的面積的比值為__________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

(1)已知x<,求函數(shù)y4x2的最大值;

(2)已知x>0,y>01,xy的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:解答題

某公司計(jì)劃2013年在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過(guò)300分鐘的廣告廣告總費(fèi)用不超過(guò)9萬(wàn)元,甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500/分鐘和200/分鐘,規(guī)定甲、乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告能給公司帶來(lái)的收益分別為0.3萬(wàn)元和0.2萬(wàn)元.問(wèn)該公司如何分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司的收益最大,最大收益是多少萬(wàn)元?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:填空題

設(shè)變量x、y滿足約束條件:zx3y的最小值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第1課時(shí)練習(xí)卷(解析版) 題型:填空題

已知f(x)是定義域?yàn)?/span>R的偶函數(shù),當(dāng)x≥0時(shí)f(x)x24x,那么不等式f(x2)<5的解集是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第1課時(shí)練習(xí)卷(解析版) 題型:解答題

已知不等式(2x)(3x)≥0的解集為A,函數(shù)f(x)(k<0)的定義域?yàn)?/span>B.

(1)求集合A;

(2)若集合B中僅有一個(gè)元素,試求實(shí)數(shù)k的值;

(3)B?A試求實(shí)數(shù)k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第6課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,圓錐的高PO4,底面半徑OB2,DPO的中點(diǎn)E為母線PB的中點(diǎn),F為底面圓周上一點(diǎn),滿足EF⊥DE.

(1)求異面直線EFBD所成角的余弦值;

(2)求二面角OOFE的正弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,E、F分別是直角三角形ABCABAC的中點(diǎn),∠B90°,沿EF將三角形ABC折成如圖所示的銳二面角A1EFB,M為線段A1C中點(diǎn).求證:

(1)直線FM∥平面A1EB;

(2)平面A1FC平面A1BC.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案