等邊三角形ABC的邊長為1,則
BC
CA
+
CA
AB
+
AB
BC
=( 。
A、3
B、-3
C、
3
2
D、-
3
2
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量的數(shù)量積公式解答,注意向量的夾角與三角形的內(nèi)角的關(guān)系.
解答: 解:因?yàn)槿切蜛BC是等邊三角形,邊長為1,并且各內(nèi)角為60°,
所以
BC
CA
+
CA
AB
+
AB
BC
=3×1×1×cos120°=-
3
2

故選:D.
點(diǎn)評(píng):本題考查了向量的數(shù)量積公式的運(yùn)用;需要注意的是:向量的夾角與三角形內(nèi)角相等或者互補(bǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=e|lnx|,則函數(shù)y=f(x+1)的大致圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的重心為G,角A,B,C所對(duì)的邊分別為a,b,c,若2a
GA
+
3
b
GB
+3c
GC
=0,則sinA:sinB:sinC=( 。
A、1:1:1
B、3:2
3
:2
C、
3
:2:1
D、
3
:1:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)F(x)滿足F(x+y)=F(x)+F(y),且當(dāng)x>0時(shí),F(xiàn)(x)<0,若對(duì)任意x∈[0,1],不等式組
F(2kx-x2)<F(k-4)
F(x2-kx)<F(k-3)
恒成立,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
1+ax
1-x
(a>0)為奇函數(shù),函數(shù)g(x)=
2
x2
+b(b∈R)
(1)求函數(shù)f(x)的定義域;
(2)當(dāng)x∈[
1
3
,
1
2
]時(shí),關(guān)于x的不等式f(1-x)≤lgg(x)有解,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=
n+2
n
Sn(n∈N*),求證:數(shù)列{
Sn
n
}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log9x=(log3y)2
(1)若x=3y,求x,y的值;
(2)當(dāng)x,y為何值時(shí),
x
y
取得最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0<|
a
|≤2,函數(shù)f(x)=cos2x-|
a
|sinx-|
b
|的最大值為0,最小值為-4,且
a
b
的夾角為45°,求|
a
+
b
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈(
2
,2π),6sin2a+5sinacosa-4cos2a=0,試求cos(
a
2
+
π
3
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案