已知復數(shù)z0=3+2i,復數(shù)z滿足z•z0=3z+z0,則復數(shù)z的共軛復數(shù)是
 
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:變形并化簡可得z=-1-
3
2
i,由共軛復數(shù)的定義可得.
解答: 解:∵復數(shù)z0=3+2i,復數(shù)z滿足z•z0=3z+z0,
∴z=
z0
z0-3
=
3+2i
2i
=
(3+2i)i
2i2
=
-2+3i
-2
=1-
3
2
i,
∴復數(shù)z的共軛復數(shù)
.
z
=1+
3
2
i
故答案為:1+
3
2
i
點評:本題考查復數(shù)的代數(shù)形式的乘除運算,涉及共軛復數(shù)的求解,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對兩個變量y和x進行回歸分析,得到一組樣本數(shù)據(jù):(x1,y1),(x2,y2)…,(xn,yn),計算線性相關(guān)系數(shù)γ;并由樣本數(shù)據(jù)得到回歸方程y=bx+a再計算殘差平方和與相關(guān)指數(shù)R2
①線性回歸方程y=bx+a必過樣本中心((
.
x
,
.
y
)
;
②線性相關(guān)系數(shù)γ的絕對值越接近于1,表明兩個隨機變量線性相關(guān)性越強;
③用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
④在回歸分析中,殘差平方和代表了數(shù)據(jù)點和它在回歸直線上相應(yīng)位置的差異.
則以上說法正確的是
 
.(寫出所有正確說法的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某品牌飲料為了擴大其消費市場,特實行“再來一瓶”有獎促銷活動.該品牌飲料的瓶蓋內(nèi)或刻有“再來一瓶”字樣,或刻有“謝謝惠顧”字樣,如見瓶蓋內(nèi)刻有“再來一瓶”字樣,即可憑該瓶蓋,在指定零售地點兌換相同規(guī)格的飲料一瓶,本次活動中獎的概率為
1
5
今年春節(jié)期間有甲、乙、丙3位朋友聚會,選用6瓶這種飲料,并限定每人喝2瓶,求:
(1)甲喝的2瓶飲料都中獎的概率;
(2)乙喝到中獎飲料的概率;
(3)甲、乙、丙3人中恰有2人喝到中獎飲料的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A,B,C的坐標分別是A(
1
5
,0),B(0,
1
5
),C(cosα,sinα)其中α∈(
π
2
,
2
),且A,B,C三點共線,求sin(π-α)+cos(π+α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|x是奇數(shù)},P={x∈R|x=4n±1,n∈Z},則集合M與P的關(guān)系是( 。
A、M=PB、M∈P
C、M?PD、M⊆P

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“m=2“是“f(x)=x2+2(m2-m-2)x+2”為偶函數(shù)”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知3x2+2y2=6x,求x2+y2的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)z=
2
1+i
+(1+i)2
,則|z|=( 。
A、
2
B、1
C、2
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正項等比數(shù)列{an}中,已知a1<a2015=1,若集A={t|(a1-
1
a1
)+(a2-
1
a2
)+…+(at-
1
at
)≤0,t∈N*},則A中元素個數(shù)為
 

查看答案和解析>>

同步練習冊答案