【題目】已知定義在R上的偶函數(shù)fx),其導(dǎo)函數(shù),當(dāng)x≥0時(shí),恒有+f(﹣x)<0,若gx)=x2fx),則不等式gx)<g12x)的解集為(  )

A.,1B.(﹣,)∪(1,+∞

C.+∞D.(﹣,

【答案】A

【解析】

根據(jù)函數(shù)fx)為偶函數(shù),則函數(shù)gx)也是偶函數(shù),利用導(dǎo)數(shù)判斷函數(shù)[0,+∞)上的單調(diào)性,則不等式gx)<g12x)等價(jià)于g|x|)<g|12x|),解不等式即可.

因?yàn)?/span>gx)=x2fx),當(dāng)x≥0時(shí),gx)=2x[ +f(﹣x]≤0,

∴函數(shù)gx)在[0,+∞)上單調(diào)遞減.

∵函數(shù)fx)是定義在R上的偶函數(shù),

∴函數(shù)gx)是定義在R上的偶函數(shù),

則不等式gx)<g12x)即g|x|)<g|12x|),

|x||12x|,解得:x1

∴不等式gx)<g12x)的解集為(1).

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義域?yàn)镈的函數(shù)y=fx,如果存在區(qū)間[m,n]D,同時(shí)滿(mǎn)足:

①fx[m,n]內(nèi)是單調(diào)函數(shù);

②當(dāng)定義域是[m,n]時(shí),fx的值域也是[m,n].則稱(chēng)[m,n]是該函數(shù)的“和諧區(qū)間”.

1證明:[0,1]是函數(shù)y=fx=x2的一個(gè)“和諧區(qū)間”.

2求證:函數(shù)不存在“和諧區(qū)間”.

3已知:函數(shù)aR,a0有“和諧區(qū)間”[m,n],當(dāng)a變化時(shí),求出n﹣m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖給出的是2000年至2016年我國(guó)實(shí)際利用外資情況,以下結(jié)論正確的是( )

A. 2000年以來(lái)我國(guó)實(shí)際利用外資規(guī)模與年份呈負(fù)相關(guān)

B. 2010年以來(lái)我國(guó)實(shí)際利用外資規(guī)模逐年增大

C. 2008年以來(lái)我國(guó)實(shí)際利用外資同比增速最大

D. 2010年以來(lái)我國(guó)實(shí)際利用外資同比增速最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】南充高中扎實(shí)推進(jìn)陽(yáng)光體育運(yùn)動(dòng),積極引導(dǎo)學(xué)生走向操場(chǎng),走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動(dòng)時(shí)長(zhǎng)35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時(shí)間,采用簡(jiǎn)單隨機(jī)抽樣法抽取了100名學(xué)生,對(duì)其平均每日參加體育鍛煉的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時(shí)間分組統(tǒng)計(jì)如下表:

分組

男生人數(shù)

2

16

19

18

5

3

女生人數(shù)

3

20

10

2

1

1

若將平均每日參加體育鍛煉的時(shí)間不低于120分鐘的學(xué)生稱(chēng)為鍛煉達(dá)人”.

1)將頻率視為概率,估計(jì)我校7000名學(xué)生中鍛煉達(dá)人有多少?

2)從這100名學(xué)生的鍛煉達(dá)人中按性別分層抽取5人參加某項(xiàng)體育活動(dòng).

①求男生和女生各抽取了多少人;

②若從這5人中隨機(jī)抽取2人作為組長(zhǎng)候選人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李從網(wǎng)上購(gòu)買(mǎi)了一件商品,快遞員計(jì)劃在下午5:00-6:00之間送貨上門(mén),已知小李下班到家的時(shí)間為下午5:30-6:00.快遞員到小李家時(shí),如果小李未到家,則快遞員會(huì)電話(huà)聯(lián)系小李.若小李能在10分鐘之內(nèi)到家,則快遞員等小李回來(lái);否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)

在如圖所示的多面體中,平面,,,,,的中點(diǎn).

(1)求證:;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的坐標(biāo)方程為,若直線(xiàn)與曲線(xiàn)相切.

(1)求曲線(xiàn)的極坐標(biāo)方程;

(2)在曲線(xiàn)上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿(mǎn)足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知首項(xiàng)相等的兩個(gè)數(shù)列滿(mǎn)足.

1)求證:數(shù)列是等差數(shù)列;

2)若,求的前n項(xiàng)和;

3)在(2)的條件下,數(shù)列是否存在不同的三項(xiàng)構(gòu)成等比數(shù)列?如果存在,請(qǐng)你求出所有符合題意的項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,是棱上的動(dòng)點(diǎn),的中點(diǎn).

(1)當(dāng)中點(diǎn)時(shí),求證:平面

(2)在棱上是否存在點(diǎn),使得平面與平面所成銳二面角為,若存在,求的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案