方程x2+y2+2ax-b2=0表示的圓形是( 。
A、一個(gè)圓
B、只有當(dāng)a=0時(shí),才能表示一個(gè)圓
C、一個(gè)點(diǎn)
D、a,b不全為0時(shí),才能表示一個(gè)圓
考點(diǎn):二元二次方程表示圓的條件
專題:直線與圓
分析:化簡二元二次方程,然后判斷形狀即可.
解答: 解:方程x2+y2+2ax-b2=0即:方程(x+a)2+y2=a2+b2.當(dāng)a,b不全為0時(shí),方程表示以(-a,0)為圓心,以
a2+b2
為半徑的圓.
故選:D.
點(diǎn)評(píng):本題考查二元二次方程表示圓的條件,注意字母參數(shù)的討論.基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
1
2
(x2+2)的最大值為
 
,單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A是△ABC三個(gè)內(nèi)角中的最小角.若sinA=
1
3
,則tanA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-1<x<2},集合B={x|1<x<3},則A∪B等于( 。
A、{ x|2<x<3}
B、{x|-1<x<3}
C、{x|-1<x<2}
D、{x|-1<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|a≤x≤a+3},B={x|x<3或x>8}.
(1)當(dāng)a=2時(shí),求∁R(A∩B),(∁RA)∪B.
(2)若集合A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=2”是“函數(shù)y=ax在R上為增函數(shù)”成立的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos(π+A)=
1
3
,那么sin(
3
2
π-A)的值為(  )
A、
1
3
B、-
1
3
C、
2
3
3
D、-
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:
(1)sin3α=3sinα-4sin3α;
(2)cos3α=4cos3α-3cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:5x+5x+1+5x+2=3x+3x+1+3x+2

查看答案和解析>>

同步練習(xí)冊(cè)答案