【題目】已知命題pxR,2mx2+mx-<0,命題q:2m+1>1.若“pq”為假,“pq”為真,則實數(shù)m的取值范圍是( 。

A. (-3,-1)∪[0,+∞) B. (-3,-1]∪[0,+∞)

C. (-3,-1)∪(0,+∞) D. (-3,-1]∪(0,+∞)

【答案】D

【解析】

根據(jù)不等式的解法分別求出命題p,q為真命題的等價條件,再結合復合命題真假關系分類討論進行求解,即可得到答案.

由題意,當m=0時,2mx2+mx-<0等價為-<0,則不等式恒成立,

當m≠0時,要使2mx2+mx-<0恒成立,則即,得-3<m<0,

綜上-3<m≤0,即p:-3<m≤0,

又由2m+1>1得m+1>0,得m>-1,即q:m>-1

若“p∧q”為假,“p∨q”為真,

則p,q一個為真命題一個為假命題,

若p真q假,則,,得-3<m≤-1,

若p假q真,則,即m>0,

綜上-3<m≤-1或m>0,

即實數(shù)m的取值范圍是(-3,-1]∪(0,+∞),

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列的前項和為,且是常數(shù),),.

(1)求的值及數(shù)列的通項公式;

(2)設,數(shù)列的前項和為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩支球隊進行總決賽,比賽采用七場四勝制,即若有一隊先勝四場,則此隊為總冠軍,比賽就此結束.因兩隊實力相當,每場比賽兩隊獲勝的可能性均為.據(jù)以往資料統(tǒng)計,第一場比賽可獲得門票收入40萬元,以后每場比賽門票收入比上一場增加10萬元.

(I)求總決賽中獲得門票總收入恰好為300萬元的概率;

(II)設總決賽中獲得門票總收入為X,求X的均值E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個不共線的向量滿足, , .

1)若垂直,求的值;

2)當時,若存在兩個不同的使得成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,討論函數(shù)的單調(diào)性;

(2)若不等式對于任意成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面四個命題:

在定義域上單調(diào)遞增;

②若銳角,滿足,則;

是定義在上的偶函數(shù),且在上是增函數(shù),若,則;

④函數(shù)的一個對稱中心是;

其中真命題的序號為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線恒過定點.

若直線經(jīng)過點且與直線垂直,求直線的方程;

若直線經(jīng)過點且坐標原點到直線的距離等于3,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓E的方程為 (a>b>0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足BM2MA,直線OM的斜率為.

(1)E的離心率e;

(2)設點C的坐標為(0,-b),N為線段AC的中點,點N關于直線AB的對稱點的縱坐標為,求E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,且橢圓過點,離心率;點在橢圓上,延長與橢圓交于點,點中點.

(1)求橢圓C的方程;

(2)若是坐標原點,記的面積之和為,求的最大值.

查看答案和解析>>

同步練習冊答案