數(shù)列-1,2,7,14,23,…的一個通項公式是________.

答案:
解析:

an=n2-2


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)二模)數(shù)列{2n-1}的前n項1,3,7,…,2n-1組成集合An={1,3,7,…,2n-1}(n∈N*),從集合An中任取k(k=1,2,3,…,n)個數(shù),其所有可能的k個數(shù)的乘積的和為Tk(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+…+Tn.例如當(dāng)n=1時,A1={1},T1=1,S1=1;當(dāng)n=2時,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.則當(dāng)n=3時,S3=
63
63
;試寫出Sn=
2
n(n+1)
2
-1
2
n(n+1)
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省西安市2006-2007高三年級八校聯(lián)考——數(shù)學(xué)(理) 題型:044

已知曲線C:f(x)=x2,C上點A,An的橫坐標分別為1和an(n=1,2,3…),且a1=5,數(shù)列{xn}滿足xn+1=tf(xn-1)+1(t>0),且().設(shè)區(qū)間Dn=[1,an](an>1)當(dāng)x∈Dn時,曲線C上存在點Pn(xn,f(xn))使得點Pn處的切線與直線AAn平行.

(Ⅰ)證明:{logt(xn-1)+1}是等比數(shù)列;

(Ⅱ)當(dāng)Dn+1Dn對一切n∈N*恒成立時,求t的取值范圍;

(Ⅲ)記數(shù)列{an}的前n項和為Sn,當(dāng)時,試比較Sn與n+7的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:朝陽區(qū)二模 題型:填空題

數(shù)列{2n-1}的前n項1,3,7,…,2n-1組成集合An={1,3,7,…,2n-1}(n∈N*),從集合An中任取k(k=1,2,3,…,n)個數(shù),其所有可能的k個數(shù)的乘積的和為Tk(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+…+Tn.例如當(dāng)n=1時,A1={1},T1=1,S1=1;當(dāng)n=2時,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.則當(dāng)n=3時,S3=______;試寫出Sn=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省揚州中學(xué)高三(上)開學(xué)數(shù)學(xué)試卷(解析版) 題型:解答題

數(shù)列{2n-1}的前n項組成集合,從集合An中任取k(k=1,2,3,…,n)個數(shù),其所有可能的k個數(shù)的乘積的和為Tk(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+…+Tn.例如:當(dāng)n=1時,A1={1},T1=1,S1=1;當(dāng)n=2時,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.
(Ⅰ)求S3;
(Ⅱ)猜想Sn,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊答案