【題目】的內(nèi)角的對邊分別為,已知.
(1)求;
(2)若,求的面積.
【答案】(1);(2).
【解析】
(1)由正弦定理得 sinA=sinBcosC+sinCsinB,從而cosBsinC=sinCsinB,進而tanB=,由此能求出B.(2)利用余弦定理得a,由此能求出△ABC的面積.
(1)由a=bcosC+csinB及正弦定理,可得:sinA=sinBcosC+sinCsinB,①
又sinA=sin(π﹣B﹣C)=sin(B+C)=sinBcosC+cosBsinC②,由①②得sinCsinB=cosBsinC,又三角形中,sinC≠0,所以sinB=cosB,又B∈(0,π),所以B=.
(2)△ABC的面積為S==.由余弦定理,b2=a2+c2﹣2accosB,得4=a2+c2﹣,又,得c2=4c=2,,所以△ABC的面積為.
科目:高中數(shù)學 來源: 題型:
【題目】某單位員工人參加“學雷鋒”志愿活動,按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
(1)下表是年齡的頻率分布表,求正整數(shù)的值;
區(qū)間 | |||||
人數(shù) |
(2)現(xiàn)在要從年齡較小的第組中用分層抽樣的方法抽取人,年齡在第組抽取的員工的人數(shù)分別是多少?
(3)在(2)的前提下,從這人中隨機抽取人參加社區(qū)宣傳交流活動,求至少有人年齡在第組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角△ABC中,AB⊥BC,D為BC邊上異于B、C的一點,以AB為直徑作⊙O,并分別交AC,AD于點E,F(xiàn).
(Ⅰ)證明:C,E,F(xiàn),D四點共圓;
(Ⅱ)若D為BC的中點,且AF=3,F(xiàn)D=1,求AE的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市在對學生的綜合素質(zhì)評價中,將其測評結(jié)果分為“優(yōu)秀、合格、不合格”三個等級,其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”. 參考公式:K2= ,其中n=a+b+c+d.
臨界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(1)某校高一年級有男生500人,女生400人,為了解性別對該綜合素質(zhì)評價結(jié)果的影響,采用分層抽樣的方法從高一學生中抽取45名學生的綜合素質(zhì)評價結(jié)果,其各個等級的頻數(shù)統(tǒng)計如下表:
等級 | 優(yōu)秀 | 合格 | 不合格 |
男生(人) | 15 | x | 5 |
女生(人) | 15 | 3 | y |
根據(jù)表中統(tǒng)計的數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認為“綜合素質(zhì)評價測評結(jié)果為優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 男生 | 女生 | 總計 |
非優(yōu)秀 | |||
總計 |
(2)以(1)中抽取的45名學生的綜合素質(zhì)評價等級的頻率作為全市各個評價等級發(fā)生的概率,且每名學生是否“優(yōu)秀”相互獨立,現(xiàn)從該市高一學生中隨機抽取3人. ①求所選3人中恰有2人綜合素質(zhì)評價為“優(yōu)秀”的概率;
②記X表示這3人中綜合素質(zhì)評價等級為“優(yōu)秀”的個數(shù),求X的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在正方體中,點是棱上的一個動點,平面交棱于點.給出下列命題:
①存在點,使得//平面;
②對于任意的點,平面平面;
③存在點,使得平面;
④對于任意的點,四棱錐的體積均不變.
其中正確命題的序號是______.(寫出所有正確命題的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果直線y=kx+1與圓x2+y2+kx+my﹣4=0交于M、N兩點,且M、N關(guān)于直線x+y=0對稱,則不等式組:表示的平面區(qū)域的面積是(。
A.
B.
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪, 圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1).設(shè)AD=x(x≥0),DE=y,求用x表示y的函數(shù)關(guān)系式,并求函數(shù)的定義域;
(2).如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應(yīng)在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應(yīng)在哪里?請予證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓C1的參數(shù)方程為(t為參數(shù)).以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,圓C2的極坐標方程為ρ=4sinθ.
(1)寫出圓C1的極坐標方程,并求圓C1與圓C2的公共弦的長度d;
(2)設(shè)射線θ=與圓C1異于極點的交點為A,與圓C2異于極點的交點為B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過點、,并且直線: 平分圓.
(Ⅰ)求圓的方程;
(Ⅱ)若過點,且斜率為的直線與圓有兩個不同的交點.
(ⅰ)求實數(shù)的取值范圍;
(ⅱ)若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com