5.從1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,概括出第n個式子為1-4+9-16+…+(-1)n+1•n2=(-1)n+1•(1+2+3+…+n).

分析 本題考查的知識點是歸納推理,解題的步驟為,由1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,中找出各式運算量之間的關系,歸納其中的規(guī)律,并大膽猜想,給出答案.

解答 解:∵1=1=(-1)1+1•1
1-4=-(1+2)=(-1)2+1•(1+2)
1-4+9=1+2+3=(-1)3+1•(1+2+3)
1-4+9-16=-(1+2+3+4)=(-1)4+1•(1+2+3+4)

所以猜想:1-4+9-16+…+(-1)n+1•n2=(-1)n+1•(1+2+3+…+n)
故答案為:1-4+9-16+…+(-1)n+1•n2=(-1)n+1•(1+2+3+…+n).

點評 歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.從原點向圓x2+y2-12x+27=0作兩條切線,則這兩條切線的夾角的大小為( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD=$\sqrt{3}$AD,AE⊥PC于點E,EF∥CD,交PD于點F
(Ⅰ)證明:平面ADE⊥平面PBC
(Ⅱ)求二面角D-AE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設sin2α=cosα,α∈($\frac{π}{2}$,π),則tan(α+$\frac{π}{3}$)的值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-m|(m>0),g(x)=2f(x)-f(x+m),g(x)的最小值為-1.
(Ⅰ)求m的值;
(Ⅱ)若|a|<m,|b|<m,且a≠0.求證:f(ab)>|a|f($\frac{a}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.當a=5時,程序運行的結果為(  )
A.3B.7C.-3D.-7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-(m-2)x-2m
(1)當m=4且x∈[2,3]時,求函數(shù)f(x)的值域;
(2)若m∈[1,3]時,f(x)≤0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程與圓${(x+\sqrt{3})}^{2}+{(y+1)}^{2}=1$相切,則此雙曲線的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.直線(m+2)x+my+1=0與直線(m-1)x+(m-4)y+2=0互相垂直,則m 的值為( 。
A.$\frac{1}{2}$B.-2C.-$\frac{1}{2}$或2D.-2或$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案