14.設(shè)$f(x)=\frac{1}{{1+{2^x}}}-1$,則f(1)+f(-1)=-1,f(2)+f(-2)=-1,f(3)+f(-3)=-1則根據(jù)上述結(jié)果,可以提出猜想:f(n)+f(-n)=-1(n∈N+).

分析 利用函數(shù)的解析式分別求解函數(shù)值,然后利用結(jié)果,猜想結(jié)論.

解答 解:$f(x)=\frac{1}{{1+{2^x}}}-1$,則f(1)+f(-1)=$\frac{1}{3}$-1+$\frac{1}{1+\frac{1}{2}}$-1=-1;
f(2)+f(-2)=$\frac{1}{1+4}$-1+$\frac{1}{1+\frac{1}{4}}$-1=-1;
f(3)+f(-3)=$\frac{1}{1+9}$-1+$\frac{1}{1+\frac{1}{9}}$-1=-1;
可以提出猜想:f(n)+f(-n)=-1.(n∈N+).
故答案為:-1;-1;-1;f(n)+f(-n)=-1.(n∈N+).

點評 本題考查函數(shù)值的求法,歸納推理的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{tx+b}{{c{x^2}+1}}$(t,b,c為常數(shù),t≠0).
(Ⅰ)若c=0時,數(shù)列{an}滿足條件:點(n,an)在函數(shù)y=f(x)的圖象上,求{an}的前n項和Sn;
(Ⅱ)在(Ⅰ)的條件下,若a3=7,S4=24,p,q∈N*(p≠q),證明:Sp+q<$\frac{1}{2}$(S2p+S2q).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左右焦點是F1,F(xiàn)2雙曲線上存在點P使離心率$e=\frac{{sin∠P{F_2}{F_1}}}{{sin∠P{F_1}{F_2}}}$,則離心率e的取值范圍是(1,$\sqrt{2}$+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.△ABC中,a、b、c分別是三內(nèi)角A、B、C的對邊,若$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{BA}•\overrightarrow{BC}$=1.解答下列問題:
(1)求證:A=B;
(2)求c的值;
(3)若$|\overrightarrow{AB}+\overrightarrow{AC}|=\sqrt{6}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(1,m).若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)m的值為$-\frac{2}{3}$,若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)m的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.一排十盞路燈,為了節(jié)能減排,需關(guān)掉其中三盞路燈,要求兩端兩盞路燈不關(guān),且關(guān)掉的路燈不相鄰的種數(shù)為20.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知點A(-2,0),B(2,0),動點C滿足條件:△ABC的周長為10,記動點C的軌跡為曲線M.
(1)求曲線M的方程;
(2)若直線l與曲線M相交于E、F兩點,若以EF為直徑的圓過點D(3,0),求證:直線l恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=sin2x+cos2x的最小正周期為π,單調(diào)增區(qū)間為$[{kπ-\frac{3π}{8},kπ+\frac{π}{8}}],k∈Z$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖的莖葉圖記錄了甲、乙兩代表隊各10名同學(xué)在一次英語聽力比賽中的成績(單位:分),已知甲代表隊數(shù)據(jù)的中位數(shù)為76,乙代表隊數(shù)據(jù)的平均數(shù)是75.
(1)求x,y的值;
(2)判斷甲、乙兩隊誰的成績更穩(wěn)定,并說明理由(方差較小者穩(wěn)定).

查看答案和解析>>

同步練習(xí)冊答案