若sinθ + cosθ = m且tanθ + cotθ = n, 則m,n的關系是

[  ]

A.m2 =n     B.m2 =  + 1

C.m2 =   D.n = 

答案:B
解析:

解: sinθ + cosθ = m   ①

    tanθ + cotθ = n    ②

    由①2得sinθcosθ = 

    由②得

1

sinθcosθ

 = n

   

    m2 =   + 1


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2
3
求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2+
1
ab
≥4.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省珠海一中2012屆高三高考模擬數(shù)學理科試題 題型:044

閱讀下面材料:根據(jù)兩角和與差的正弦公式,有

sin(α+β)=sinαcosβ+coαsinβ ①

sin(α-β)=sinαcosβ-cosαsinβ、

由①+②得

sin(α+β)+sin(α-β)=2sinαcosβ ③

令α+β=A,α-β=B有α=,β=

代入③得sinA+sinB=2sincos

(Ⅰ)上面的式子叫和差化積公式,類比上述推理方法,根據(jù)兩角和與差的余弦公式,把cosA-cosB也化成積的形式,要求有推導過程;

(Ⅱ)若△ABC的三個內(nèi)角A,B,C滿足cos2A-cos2B=1-cos2C,試判斷△ABC的形狀.(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市高三(上)學情調(diào)研數(shù)學試卷(二)(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設a>0,b>0,若矩陣A=把圓C:x2+y2=1變換為橢圓E:=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2≥4.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市金陵中學高三(上)學情調(diào)研數(shù)學試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設a>0,b>0,若矩陣A=把圓C:x2+y2=1變換為橢圓E:=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2≥4.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市高三(上)學情調(diào)研數(shù)學試卷(二)(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設a>0,b>0,若矩陣A=把圓C:x2+y2=1變換為橢圓E:=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2≥4.

查看答案和解析>>

同步練習冊答案