已知函數(shù)f(x)=m•9x-3x,若存在非零實(shí)數(shù)x0,使得f(-x0)=f(x0)成立,則實(shí)數(shù)m的取值范圍是(  )
A、m
1
2
B、0<m<
1
2
C、0<m<2
D、m≥2
考點(diǎn):指數(shù)函數(shù)綜合題
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得m•9x-3x =m•9-x-3-x 有解,可得
1
m
=3x+3-x ,利用基本不等式求得m的范圍.
解答: 解:由題意可得m•9x-3x =m•9-x-3-x 有解,即m(9x-9x )=(3x-3-x )有解.
可得
1
m
=3x+3-x ≥2 ①,求得0<m≤
1
2

再由x0為非零實(shí)數(shù),可得①中等號(hào)不成立,故0<m<
1
2
,
故選:B.
點(diǎn)評(píng):本題主要考查指數(shù)函數(shù)的綜合應(yīng)用,基本不等式的應(yīng)用,注意檢驗(yàn)等號(hào)成立條件是否具備,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=
3
2
sin2x-sin2x+
1
2

(1)求f(x)最小周期
(2)x∈[0,π]求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△PAB和△QAC是兩個(gè)全等的直角三角形,其中PA=AC=2AB=2CQ=4,∠PBA=∠AQC=90°.將△PAB繞AB旋轉(zhuǎn)一周,當(dāng)P,Q兩點(diǎn)間的距離在[
10
,2
7
]內(nèi)變化時(shí),動(dòng)點(diǎn)P所形成的軌跡的長(zhǎng)度是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=asinx+bx+4(a,b為實(shí)數(shù)),且f(ln10)=5,則f(ln
1
10
)的值是(  )
A、-5B、-3
C、3D、隨a,b取不同值而取不同值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若偶函數(shù)f(x)滿足f(x-1)=f(x+1),在x∈[0,1]時(shí),f(x)=x2,則關(guān)于x的方程f(x)=(
1
10
x在[0,4]上根的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面內(nèi)三點(diǎn)A(3,0)、B(0,3)、C(cosα,sinα),若
AC
BC
=-1,求
2sin2α+sin2α
1+tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn)O,長(zhǎng)軸在x軸上,離心率為
1
2
,且橢圓C上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為4.
(Ⅰ)橢圓C的標(biāo)準(zhǔn)方程.
(Ⅱ)已知P、Q是橢圓C上的兩點(diǎn),若OP⊥OQ,求證:
1
|OP|2
+
1
|OQ|2
為定值.
(Ⅲ)當(dāng)
1
|OP|2
+
1
|OQ|2
為(Ⅱ)所求定值時(shí),試探究OP⊥OQ是否成立?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>b≥1,集合A={x|x∈Z,0<x<a},B={x|x∈Z,-b<x<b},記“從集合A中任取一個(gè)元素x,x∉B”為事件M,“從集合A中任取一個(gè)元素x,x∈B”為事件N.給定下列三個(gè)命題:
①當(dāng)a=5,b=3時(shí),P(M)=P(N)=
1
2
;
②若P(M)=1,則a=2,b=1;
③P(M)+P(N)=1恒成立.
其中,為真命題的是(  )
A、①②B、①③C、②③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=log3x,
(1)求f(x)的解析式;
(2)解不等式f(x)≤2.

查看答案和解析>>

同步練習(xí)冊(cè)答案