設(shè)F1、F2是雙曲線的兩個焦點,P在雙曲線上,且滿足∠F1PF2=90°,則△PF1F2的面積是(    )

A.1 B. C.2 D.

A

解析試題分析:在△FPF中, | FF|=" |" PF|+| PF|=20,∵| | PF|-| PF| |=4,∴-2| PF|·| PF|="(|" PF|-| PF|)-| PF|+| PF|=-4,∴| PF|·| PF|=2,∴=| PF|·| PF|=1,故選A
考點:本題考查了雙曲線的性質(zhì)
點評:解決雙曲線中的焦點三角形問題的關(guān)鍵是“| PF|·| PF|”形式的配湊,將雙曲線的定義及圖形的平面幾何屬性“和諧”地結(jié)合起來,從而達到簡化運算過程,提示問題的本質(zhì)特征

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

拋物線與直線交于A,B兩點,其中A點的坐標是.該拋物線的焦點為F,則(   )

A.7 B. C.6 D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

過點P(0,-2)的雙曲線C的一個焦點與拋物線的焦點相同,則雙曲線C的標準方程是(   )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖所示,橢圓、與雙曲線的離心率分別是、, 則、的大小關(guān)系是(   )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

經(jīng)過橢圓的右焦點作傾斜角為的直線,交橢圓于A、B兩點,O為坐標原點,則  ( )
A. -3           B.             C . -3或            D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知的頂點、分別為雙曲線的左右焦點,頂點在雙曲線上,則的值等于

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知F1,F2是橢圓的兩個焦點,過F1且與橢圓長軸垂直的直線交橢圓于A,B兩點,若△ABF2是正三角形,則這個橢圓的離心率是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,F(xiàn)1,F(xiàn)2是雙曲線C:(a>0,b>0)的左、右焦點,過F1的直線的左、右兩支分別交于A,B兩點.若 | AB | : | BF2 | : | AF2 |=3:4 : 5,則雙曲線的離心率為

A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)F1、F2為橢圓的左、右焦點,過橢圓中心任作一直線與橢圓交于P、Q 兩點,當四邊形PF1QF2面積最大時,的值等于(    )

A.0B.1C.2D.4

查看答案和解析>>

同步練習(xí)冊答案