設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N*,都有a13+a23+a33+…+=Sn2,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(I)求證:an2=2Sn-an;
(II)求數(shù)列{an}的通項(xiàng)公式;
(III)若bn=3n+(-1)n-1λ•2an(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對(duì)任意n∈N*,都有bn+1>bn,若存在,求出λ的值;若不存在,說明理由.
分析:本題考查的是數(shù)列與不等式的綜合題.在解答時(shí):
(I)首先討論n=1和n≥2時(shí)兩種情況,結(jié)合通項(xiàng)與前n項(xiàng)和之間的關(guān)系通過作差、變形化簡即可獲得問題的解答;
(II)利用(1)的結(jié)論寫出相鄰的一項(xiàng)對(duì)應(yīng)的關(guān)系式,注意保證n≥2.用作差法可分析知數(shù)列a
n為等差數(shù)列,進(jìn)而即可獲得數(shù)列的通項(xiàng)公式;
(III)首先假設(shè)存在λ使得滿足題意,然后計(jì)算化簡b
n+1-b
n,再結(jié)合恒成立問題進(jìn)行轉(zhuǎn)化,將問題轉(zhuǎn)化為:
(-1)n-1•λ<()n-1對(duì)任意的n∈N*恒成立.然后分n為奇偶數(shù)討論即可獲得λ的范圍,再結(jié)合為整數(shù)即可獲得問題的解答.
解答:解:
(I)證明:當(dāng)n=1時(shí),a
13=a
12,∵a
1>0,∴a
1=1.
當(dāng)n≥2時(shí),a
13+a
23+…+a
n3=S
n2,
a
13+a
23+…+a
n-13=S
n-12,
兩式相減知:a
n3=S
n2-S
n-12=a
n(2a
1+2a
2+…+2a
n-1+a
n),
∵a
n>0
∴a
n2=2a
1+2a
2+…+2a
n-1+2a
n-a
n∴a
n2=2S
n-a
n綜上可知:∴a
n2=2S
n-a
n,n∈N*.
(II)∵a
n2=2S
n-a
n∴當(dāng)n≥2時(shí),a
n-12=2S
n-1-a
n-1,
∴a
n2-a
n-12=2(S
n-S
n-1)-a
n+a
n-1,
∴(a
n+a
n-1)(a
n-a
n-1-1)=0
又∵a
n+a
n-1>0,∴a
n-a
n-1-1=0
∴a
n-a
n-1=1
所以數(shù)列a
n為首項(xiàng)為1,公差為1的等差數(shù)列.
∴數(shù)列{a
n}的通項(xiàng)公式為:a
n=n,n∈N*.
(III)假設(shè)存在λ使得對(duì)任意的n∈N*,有b
n+1>b
n.
∵a
n=n,n∈N*
∴b
n=3
n+(-1)
n-1•λ
•2an= 3n +(-1)n-1•λ•2n,
∴b
n+1-b
n=[3
n+1+(-1)
n•λ•2
n+1]-[3
n+(-1)
n-1•λ•2
n]
∴b
n+1-b
n=2•3
n-3λ(-1)
n-1•2
n>0
∴
(-1)n-1•λ<()n-1對(duì)任意的n∈N*恒成立.
當(dāng)n=2k-1,k∈N*時(shí),
λ<()2k-2對(duì)任意的k∈N*恒成立.
∴λ<1
當(dāng)n=2k,k∈N*時(shí),
λ>-()2k-1對(duì)任意的k∈N*恒成立.
∴λ>-
∴-
<λ<1,又∵λ≠0且λ∈Z
∴λ=-1.
∴存在整數(shù)λ=-1,使得對(duì)任意n∈N*有b
n+1>b
n成立.
點(diǎn)評(píng):本題考查的是數(shù)列與不等式的綜合題.在解答的過程當(dāng)中充分體現(xiàn)了數(shù)列通項(xiàng)與前n項(xiàng)和的知識(shí)、分類討論的知識(shí)以及恒成立問題的解答規(guī)律.值得同學(xué)們體會(huì)和反思.