【題目】設函數(shù)f(x)=x3﹣12x+b,則下列結論正確的是( )
A.函數(shù)f(x)在(﹣∞,﹣1)上單調遞增
B.函數(shù)f(x)在(﹣∞,﹣1)上單調遞減
C.若b=﹣6,則函數(shù)f(x)的圖象在點(﹣2,f(﹣2))處的切線方程為y=10
D.若b=0,則函數(shù)f(x)的圖象與直線y=10只有一個公共點
【答案】C
【解析】解:函數(shù)f(x)=x3﹣12x+b,可得f′(x)=3x2﹣12,令3x2﹣12=0,可得x=﹣2,或x=2.
函數(shù)f(x)在(﹣∞,﹣2)上單調遞增,所以A、B都不正確;b=﹣6,f′(﹣2)=0.f(﹣2)=10,
則函數(shù)f(x)的圖象在點(﹣2,f(﹣2))處的切線方程為y=10,正確;
若b=0,則函數(shù)f(x)的極大值為:16,圖象與直線y=10只有一個公共點錯誤;
故選:C.
【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調性的相關知識點,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸,長度單位相同,建立極坐標系,已知圓A的參數(shù)方程為 (其中θ為參數(shù)),圓B的極坐標方程為ρ=2sinθ.
(Ⅰ)分別寫出圓A與圓B的直角坐標方程;
(Ⅱ)判斷兩圓的位置關系,若兩圓相交,求其公共弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司經(jīng)營一批進價為每件400元的商品,在市場調查時發(fā)現(xiàn),此商品的銷售單價x(元)與日銷售量y(件)之間的關系如下表所示:
x/元 | 500 | 600 | 700 | 800 | 900 |
y/件 | 10 | 8 | 9 | 6 | 1 |
(1)求y關于x的回歸直線方程.
(2)借助回歸直線方程,預測銷售單價為多少元時,日利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設命題p:函數(shù)f(x)=lg(ax2﹣x+ )的值域為R;命題q:3x﹣9x<a對一切實數(shù)x恒成立,如果命題“p且q”為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣xcosx.
(1)討論f(x)在(0,2π)上的單調性;
(2)若關于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有兩個根,求實數(shù)m的取值范圍.
(3)求證:當x∈(0, )時,f(x)< x3 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出兩個命題:
命題甲:關于x的不等式x2+(a﹣1)x+a2≤0的解集為;
命題乙:函數(shù)y=(2a2﹣a)x為增函數(shù).
(1)甲、乙至少有一個是真命題;
(2)甲、乙有且只有一個是真命題;
分別求出符合(1)(2)的實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,D是到原點的距離不大于1的點構成的區(qū)域,E是滿足不等式組 的點(x,y)構成的區(qū)域,向D中隨機投一點,則所投的點落在E中的概率是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,設直線過點A( , ),B(3, ),且直線與曲線C:ρ=2rsinθ(r>0)有且只有一個公共點,求實數(shù)r的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的離心率為,以坐標原點O為圓心,橢圓C的短半軸長為半徑的圓與直線x+y+=0相切.A,B分別是橢圓C的左、右頂點,直線l過B點且與x軸垂直.
(1)求橢圓C的標準方程;
(2)設G是橢圓C上異于A,B的任意一點,過點G作GH⊥x軸于點H,延長HG到點Q使得|HG|=|GQ|,連接AQ并延長交直線l于點M,N為線段MB的中點,判斷直線QN與以AB為直徑的圓O的位置關系,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com