【題目】已知函數(shù)

1)求fx)的定義域;

2)當(dāng)x∈(1,+∞),

①求證:fx)在區(qū)間(1,+∞)上是減函數(shù);

②求使關(guān)系式f2+m)>f2m-1)成立的實(shí)數(shù)m的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解高三年級學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個(gè)班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)結(jié)果繪成頻率分別直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的有8人.

I)求直方圖中的值及甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的人數(shù);

II)從甲、乙兩個(gè)班每天平均學(xué)習(xí)時(shí)間大于10個(gè)小時(shí)的學(xué)生中任取4人參加測試,設(shè)4人中甲班學(xué)生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,F1F2是橢圓C1y2=1與雙曲線C2的公共焦點(diǎn),A、B分別是C1、C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則C2的離心率是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)四邊形的頂點(diǎn)在橢圓上,且對角線過原點(diǎn),若,

(1)求的最值;

(2)求證;四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,ABCD,AC,AB=2BC=2,ACFB.

(1)求證:AC⊥平面FBC

(2)求四面體FBCD的體積;

(3)線段AC上是否存在點(diǎn)M,使得EA∥平面FDM?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行六面體ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求異面直線A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.

(1).證明:平面PAB⊥平面PAD;

(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知拋物線C的方程Cy2="2" p xp0)過點(diǎn)A1,-2.

I)求拋物線C的方程,并求其準(zhǔn)線方程;

II)是否存在平行于OAO為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OAl的距離等于?若存在,求出直線l的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高一年級期末考試的學(xué)生中抽出60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(1)求第四小組的頻率,補(bǔ)全頻率分布直方圖,并求樣本數(shù)據(jù)的眾數(shù),中位數(shù),平均數(shù)和方差,(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);

(2)從被抽取的數(shù)學(xué)成績是分以上(包括分)的學(xué)生中選兩人,求他們在同一分?jǐn)?shù)段的概率;

(3)假設(shè)從全市參加高一年級期末考試的學(xué)生中,任意抽取個(gè)學(xué)生,設(shè)這四個(gè)學(xué)生中數(shù)學(xué)成績?yōu)?/span>分以上(包括分)的人數(shù)為(以該校學(xué)生的成績的頻率估計(jì)概率),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案