【題目】甲、乙兩名運動員參加“選拔測試賽”,在相同條件下,兩人6次測試的成績(單位:分)記錄如下:

甲 86 77 92 72 78 84

乙 78 82 88 82 95 90

(1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)要從中選派一名運動員參加比賽,你認(rèn)為選派誰參賽更好?說明理由(不用計算);

(2)若將頻率視為概率,對運動員甲在今后三次測試成績進(jìn)行預(yù)測,記這三次成績高于85分的次數(shù)為,求的分布列和數(shù)學(xué)期望及方差.

【答案】(1) 故選乙;(2) , .

【解析】試題分析:(1根據(jù)莖葉圖的定義,觀察數(shù)據(jù)的平均值以及數(shù)據(jù)分散與集中程度可得結(jié)果;(2甲運動員每次測試高于85分的概率大約是,成績高于85分的次數(shù)為服從二項分布,從而可得分布列,利用二項分布的期望與方差公式可得結(jié)果.

試題解析:(1)

由圖可知乙的平均水平比甲高,故選乙.

(2)甲運動員每次測試高于85分的概率大約是,成績高于85分的次數(shù)為服從二項分布,分布列為

0

1

2

3

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校對甲、乙兩個班級進(jìn)行了物理測驗,成績統(tǒng)計如下(每班50人):

(1)估計甲班的平均成績;

(2)成績不低于80分記為“優(yōu)秀”.請完成下面的列聯(lián)表,并判斷是否有85%的把握認(rèn)為:“成績優(yōu)秀”與所在教學(xué)班級有關(guān)?

(3)從兩個班級,成績在的學(xué)生中任選2人,記事件為“選出的2人中恰有1人來自甲班”.求事件的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,且橢圓過點,記橢圓的左、右頂點分別為,點是橢圓上異于的點,直線與直線分別交于點.

(1)求橢圓的方程;

(2)過點作橢圓的切線,記,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點P(0,﹣4),且傾斜角為 ,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求直線l的參數(shù)方程和圓C的直角坐標(biāo)方程;
(2)若直線l和圓C相交于A、B兩點,求|PA||PB|及弦長|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)為二次函數(shù),且f(x﹣1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當(dāng)x∈[t,t+2],t∈R時,求函數(shù)f(x)的最小值(用t表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 是自然對數(shù)的底數(shù)).

(1)當(dāng)時,求曲線在點處的切線方程;

(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是二次函數(shù),若f(0)=0且f(x+1)﹣f(x)=x+1,求函數(shù)f(x)的解析式,并求出它在區(qū)間[﹣1,3]上的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50 名,其中每天玩微信超過6 小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與”性別“有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5 人并從選出的5 人中再隨機(jī)抽取3 人贈送200 元的護(hù)膚品套裝,記這3 人中“微信控”的人數(shù)為X,試求X 的分布列與數(shù)學(xué)期望.

參考公式:,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某天連續(xù)有節(jié)課,其中語文、英語、物理、化學(xué)、生物科各節(jié),數(shù)學(xué)節(jié)在排課時,要求生物課不排第節(jié),數(shù)學(xué)課要相鄰,英語課與數(shù)學(xué)課不相鄰,則不同排法的種數(shù)是( )

A B

C D

查看答案和解析>>

同步練習(xí)冊答案